Graph sparsification

Bruno Ordozgoiti ${ }^{1}$
${ }^{1}$ Aalto University

Helsinki 2021

We write $A-B \succcurlyeq 0$ if $A-B$ is P.S.D.
We consider a graph $G=(V, E)$ with Laplacian $L_{G}=D_{G}-A_{G}$.
Definition: ϵ-approximation of a graph.
$H=\left(V, E^{\prime}\right) \epsilon$-approximates G if

$$
(1-\epsilon) L_{G} \preccurlyeq L_{H} \preccurlyeq(1+\epsilon) L_{G} .
$$

We write $A-B \succcurlyeq 0$ if $A-B$ is P.S.D.
We consider a graph $G=(V, E)$ with Laplacian $L_{G}=D_{G}-A_{G}$.
Definition: ϵ-approximation of a graph.
$H=\left(V, E^{\prime}\right) \epsilon$-approximates G if

$$
(1-\epsilon) L_{G} \preccurlyeq L_{H} \preccurlyeq(1+\epsilon) L_{G} .
$$

Implications:

- $(1-\epsilon) x^{T} L_{G} x \preccurlyeq x^{T} L_{H} x \preccurlyeq(1+\epsilon) x^{T} L_{G} x$.

We write $A-B \succcurlyeq 0$ if $A-B$ is P.S.D.
We consider a graph $G=(V, E)$ with Laplacian $L_{G}=D_{G}-A_{G}$.
Definition: ϵ-approximation of a graph.
$H=\left(V, E^{\prime}\right) \epsilon$-approximates G if

$$
(1-\epsilon) L_{G} \preccurlyeq L_{H} \preccurlyeq(1+\epsilon) L_{G} .
$$

Implications:

- $(1-\epsilon) x^{T} L_{G} x \preccurlyeq x^{T} L_{H} X \preccurlyeq(1+\epsilon) x^{T} L_{G} x$.
- Cuts: $(1-\epsilon) 1_{S}^{T} L_{G} 1_{S} \preccurlyeq 1_{S}^{T} L_{H} 1_{S} \preccurlyeq(1+\epsilon) 1_{S}^{T} L_{G} 1_{S}$.

First step: build H randomly to preserve G in expectation.

$$
w_{H}(u, v)= \begin{cases}\frac{w_{G}(u, v)}{p_{u, v}} & \text { w. p. } p_{u, v} \\ 0 & \text { w. p. } 1-p_{u, v}\end{cases}
$$

$\mathbb{E}\left[L_{H}\right]=\sum_{u, v \in E} p_{u, v} \frac{w_{G}(u, v)}{p_{u, v}} L_{u, v}=L_{G}$ where $L_{u, v}$ is the Laplacian of the graph with unique edge u, v.

First step: build H randomly to preserve G in expectation.

$$
w_{H}(u, v)= \begin{cases}\frac{w_{G}(u, v)}{p_{u, v}} & \text { w. p. } p_{u, v} \\ 0 & \text { w. p. } 1-p_{u, v}\end{cases}
$$

$\mathbb{E}\left[L_{H}\right]=\sum_{u, v \in E} p_{u, v} \frac{w_{G}(u, v)}{p_{u, v}} L_{u, v}=L_{G}$ where $L_{u, v}$ is the Laplacian of the graph with unique edge u, v.

First step: build H randomly to preserve G in expectation.

$$
w_{H}(u, v)= \begin{cases}\frac{w_{G}(u, v)}{p_{u, v}} & \text { w. p. } p_{u, v} \\ 0 & \text { w. p. } 1-p_{u, v}\end{cases}
$$

$\mathbb{E}\left[L_{H}\right]=\sum_{u, v \in E} p_{u, v} \frac{w_{G}(u, v)}{p_{u, v}} L_{u, v}=L_{G}$ where $L_{u, v}$ is the Laplacian of the graph with unique edge u, v.

We now need Chernoff bounds for the concentration of eigenvalues.

Matrix Chernoff bounds (Tropp, 2012) ${ }^{1}$.

Theorem

Theorem 32.3.1. Let X_{1}, \ldots, X_{m} be independent random n-dimensional symmetric positive semidefinite matrices so that $\left\|X_{i}\right\| \leq R$ almost surely. Let $X=\sum_{i} X_{i}$ and let $\mu_{\text {max }}$ and $\mu_{\text {min }}$ be the maximum and minimum eigenvalues of

$$
\mathbb{E}[X]=\sum_{i} \mathbb{E}\left[X_{i}\right] .
$$

Then

$$
\begin{aligned}
& \operatorname{Pr}\left[\lambda_{\min }\left(\sum_{i} X_{i}\right) \leq(1-\epsilon) \mu_{\min }\right] \leq n\left(\frac{e^{-\epsilon}}{(1-\epsilon)^{1-\epsilon}}\right)^{\frac{\mu_{\min }}{R}} \leq n e^{\frac{-\epsilon^{2} \mu_{\min }}{2 R}}, \\
& \operatorname{Pr}\left[\lambda_{\max }\left(\sum_{i} X_{i}\right) \geq(1+\epsilon) \mu_{\max }\right] \leq n\left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\frac{\mu_{\max }}{R}} \leq n e^{\frac{-\epsilon^{2} \mu_{\max }}{3 R}}
\end{aligned}
$$

[^0] computational mathematics 12.4 (2012): 389-434.

Matrix Chernoff bounds (Tropp, 2012) ${ }^{1}$.

Theorem

Theorem 32.3.1. Let X_{1}, \ldots, X_{m} be independent random n-dimensional symmetric positive semidefinite matrices so that $\left\|X_{i}\right\| \leq R$ almost surely. Let $X=\sum_{i} X_{i}$ and let $\mu_{\text {max }}$ and $\mu_{\text {min }}$ be the maximum and minimum eigenvalues of

$$
\mathbb{E}[X]=\sum_{i} \mathbb{E}\left[X_{i}\right]
$$

Then

$$
\begin{aligned}
& \operatorname{Pr}\left[\lambda_{\min }\left(\sum_{i} X_{i}\right) \leq(1-\epsilon) \mu_{\min }\right] \leq n\left(\frac{e^{-\epsilon}}{(1-\epsilon)^{1-\epsilon}}\right)^{\frac{\mu_{\min }}{R}} \leq n e^{\frac{-\epsilon^{2} \mu_{\min }}{2 R}}, \\
& \operatorname{Pr}\left[\lambda_{\max }\left(\sum_{i} X_{i}\right) \geq(1+\epsilon) \mu_{\max }\right] \leq n\left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\frac{\mu_{\max }}{R}} \leq n e^{\frac{-\epsilon^{2} \mu_{\max }}{3 R}}
\end{aligned}
$$

[^1]In a nutshell, if $\left\|X_{i}\right\| \leq R$, we fail with probability at most $n e^{\frac{-\epsilon^{2} \mu_{\min }}{2 R}}$ (similar for $\mu_{\max }$).

Recall: $L_{H}=\sum_{u, v \in E} \frac{w_{G}(u, v)}{p_{u, v}} L_{u, v}$.

Thus, we just need to choose $p_{u, v}$ carefully, so that $\left\|\frac{w_{G}(u, v)}{p_{u, v}} L_{u, v}\right\| \leq R$.
But first, let's take care of a little annoyance: $n e^{\frac{-\epsilon^{2} \mu_{\text {min }}}{2 R}}$

For PD matrices A, B,

$$
A \preccurlyeq B(1+\epsilon) \Leftrightarrow B^{-1 / 2} A B^{-1 / 2} \preccurlyeq(1+\epsilon) / .
$$

For PD matrices A, B,

$$
A \preccurlyeq B(1+\epsilon) \Leftrightarrow B^{-1 / 2} A B^{-1 / 2} \preccurlyeq(1+\epsilon) I .
$$

For singular matrices we can use the pseudoinverse:

$$
L_{H} \preccurlyeq(1+\epsilon) L_{G} \Leftrightarrow L_{G}^{+/ 2} L_{H} L_{G}^{+/ 2} \preccurlyeq(1+\epsilon) L_{G}^{+/ 2} L_{G} L_{G}^{+/ 2}
$$

where $L_{G}^{+/ 2} L_{G}^{+/ 2}=L_{G}^{+}$.

For PD matrices A, B,

$$
A \preccurlyeq B(1+\epsilon) \Leftrightarrow B^{-1 / 2} A B^{-1 / 2} \preccurlyeq(1+\epsilon) / .
$$

For singular matrices we can use the pseudoinverse:

$$
L_{H} \preccurlyeq(1+\epsilon) L_{G} \Leftrightarrow L_{G}^{+/ 2} L_{H} L_{G}^{+/ 2} \preccurlyeq(1+\epsilon) L_{G}^{+/ 2} L_{G} L_{G}^{+/ 2}
$$

where $L_{G}^{+/ 2} L_{G}^{+/ 2}=L_{G}^{+}$. Now,

- $\Pi=L_{G}^{+/ 2} L_{G} L_{G}^{+/ 2}$ is a projection. Indeed, $\Pi \Pi=L_{G}^{+/ 2} L_{G} L_{G}^{+/ 2} L_{G}^{+/ 2} L_{G} L_{G}^{+/ 2}=L_{G}^{+/ 2} L_{G} L_{G}^{+/ 2}=\Pi$. So $\mu_{\min }=\mu_{\max }=1$.
- And $\mathbb{E}\left[L_{G}^{+/ 2} L_{H} L_{G}^{+/ 2}\right]=\Pi$.

Thus, we sample matrices X as follows:

$$
w_{X}(u, v)= \begin{cases}\frac{w_{G}(u, v)}{p_{u, v}} L_{G}^{+/ 2} L_{u, v} L_{G}^{+/ 2} & \text { w. p. } p_{u, v} \\ 0 & \text { w. p. } 1-p_{u, v}\end{cases}
$$

so that $\sum_{(u, v) \in E} X_{u, v}=L_{G}^{+/ 2} L_{H} L_{G}^{+/ 2}$.
Since we want $\left\|X_{u, v}\right\| \leq R$, we choose $p_{u, v}=\frac{1}{R} w_{G}(u, v)\left\|L_{G}^{+/ 2} L_{u, v} L_{G}^{+/ 2}\right\|$.
We now fail with probability at most $n e^{\frac{-\epsilon^{2} \mu_{\text {min }}}{2 R}}=n e^{\frac{-\epsilon^{2}}{2 R}}$ (similar for $\mu_{\text {max }}$).

How may edges do we pick?
Conveniently, $\left\|L_{G}^{+/ 2} L_{u, v} L_{G}^{+/ 2}\right\|=\left(\delta_{u}-\delta_{v}\right)^{T} L_{G}^{+}\left(\delta_{u}-\delta_{v}\right)=R_{\text {eff }}(u, v)$, which is the effective resistance between u and v.

How may edges do we pick?
Conveniently, $\left\|L_{G}^{+/ 2} L_{u, v} L_{G}^{+/ 2}\right\|=\left(\delta_{u}-\delta_{v}\right)^{T} L_{G}^{+}\left(\delta_{u}-\delta_{v}\right)=R_{\text {eff }}(u, v)$, which is the effective resistance between u and v.

Interpretations of $w_{G}(u, v) R_{\text {eff }}(u, v)$:

- probability that (u, v) appears in a random spanning tree,
- leverage score of the edge (u, v) in the incidence matrix.

So $\mathbb{E}\left[\left|E_{H}\right|\right]=\sum_{(u, v) \in E} p_{u, v}=\sum_{(u, v) \in E} \frac{1}{R} w_{G}(u, v) R_{\text {eff }}(u, v)=$

How may edges do we pick?
Conveniently, $\left\|L_{G}^{+/ 2} L_{u, v} L_{G}^{+/ 2}\right\|=\left(\delta_{u}-\delta_{v}\right)^{T} L_{G}^{+}\left(\delta_{u}-\delta_{v}\right)=R_{\text {eff }}(u, v)$, which is the effective resistance between u and v.

Interpretations of $w_{G}(u, v) R_{\text {eff }}(u, v)$:

- probability that (u, v) appears in a random spanning tree,
- leverage score of the edge (u, v) in the incidence matrix.

So $\mathbb{E}\left[\left|E_{H}\right|\right]=\sum_{(u, v) \in E} p_{u, v}=\sum_{(u, v) \in E} \frac{1}{R} w_{G}(u, v) R_{e f f}(u, v)=\frac{n-1}{R}$.

Thus, we sample about $\frac{n}{R}$ edges in expectation, and our probability failure is at most $n e^{\frac{-\epsilon^{2}}{2 R}}$.

How to choose R ?

Thus, we sample about $\frac{n}{R}$ edges in expectation, and our probability failure is at most $n e^{\frac{-\epsilon^{2}}{2 R}}$.

How to choose R ?
$R=\frac{\epsilon^{2}}{3.5 \log n}$.

Thus, we sample about $\frac{n}{R}$ edges in expectation, and our probability failure is at most $n e^{\frac{-\epsilon^{2}}{2 R}}$.

How to choose R ?
$R=\frac{\epsilon^{2}}{3.5 \log n}$.
We have found a graph $H=\left(V, E^{\prime}\right)$ with $\mathbb{E}\left[\left|E^{\prime}\right|\right]=\mathcal{O}\left(\frac{n \log n}{\epsilon^{2}}\right)$ satisfying

$$
\begin{aligned}
& \operatorname{Pr}\left[\lambda_{\min }\left(L_{G}^{+/ 2} L_{H} L_{G}^{+/ 2}\right) \leq(1-\epsilon) \mu_{\min }\right] \leq n e^{-\epsilon^{2} /(2 R)} \leq n e^{-(3.5 / 2) \log n}=n^{-3 / 4} \\
& \operatorname{Pr}\left[\lambda_{\max }\left(L_{G}^{+/ 2} L_{H} L_{G}^{+/ 2}\right) \geq(1+\epsilon) \mu_{\max }\right] \leq n e^{-\epsilon^{2} /(3 R)} \leq n e^{-(3.5 / 3) \log n}=n^{-1 / 6} .
\end{aligned}
$$

There are linear-sized $\left(O\left(\frac{n}{\epsilon^{2}}\right)\right)$ sparsifiers! (Batson et al., 2012) ${ }^{2}$

[^2] Journal on Computing 41.6 (2012): 1704-1721.

There are linear-sized $\left(O\left(\frac{n}{\epsilon^{2}}\right)\right)$ sparsifiers! (Batson et al., 2012) ${ }^{2}$

Will this work with adjacency matrices?

[^3]There are linear-sized $\left(O\left(\frac{n}{\epsilon^{2}}\right)\right)$ sparsifiers! (Batson et al., 2012) ${ }^{2}$

Will this work with adjacency matrices?

Will this work with signed graphs?

[^4]$G=(V, E) .|V|=1000$. Density: 0.05 . Planted subgraph with $\left|V^{\prime}\right|=100$, density: 0.75 .

Edge ratio

$G=(V, E) .|V|=1000$. Density: 0.05 . Planted subgraph with $\left|V^{\prime}\right|=100$, density: 0.75 .

Edge ratio

$G=(V, E) .|V|=1000$. Density: 0.05 . Planted subgraph with $\left|V^{\prime}\right|=100$, density: 0.75 .

Edge ratio

Thanks！

References I

Batson, J., Spielman, D. A., and Srivastava, N. (2012). Twice-ramanujan sparsifiers. SIAM Journal on Computing, 41(6):1704-1721.
Tropp, J. A. (2012). User-friendly tail bounds for sums of random matrices.
Foundations of computational mathematics, 12(4):389-434.

[^0]: ${ }^{1}$ Tropp, Joel A. "User-friendly tail bounds for sums of random matrices." Foundations of

[^1]: ${ }^{1}$ Tropp, Joel A. "User-friendly tail bounds for sums of random matrices." Foundations of computational mathematics 12.4 (2012): 389-434.

[^2]: ${ }^{2}$ Batson, Joshua, Daniel A. Spielman, and Nikhil Srivastava. "Twice-ramanujan sparsifiers." SIAM

[^3]: ${ }^{2}$ Batson, Joshua, Daniel A. Spielman, and Nikhil Srivastava. "Twice-ramanujan sparsifiers." SIAM Journal on Computing 41.6 (2012): 1704-1721.

[^4]: ${ }^{2}$ Batson, Joshua, Daniel A. Spielman, and Nikhil Srivastava. "Twice-ramanujan sparsifiers." SIAM Journal on Computing 41.6 (2012): 1704-1721.

