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We write A— B =0if A— Bis PS.D.
We consider a graph G = (V, E) with Laplacian Lg = D¢ — Ag.
Definition: e-approximation of a graph.

H = (V,E') e-approximates G if

(1 = G)LG <X Lly < (1 -|-6)Lc;.
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First step: build H randomly to preserve G in expectation.
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First step: build H randomly to preserve G in expectation.

WG(U,V)
wi(u, v) = Puv W. P. Puyv
0 w. p. 1 —pyy.

E[LH] =, veE Pu,vMLUN = Lg where L, is the Laplacian of the graph with

1 Pu,v
unique edge u, v.

We now need Chernoff bounds for the
concentration of eigenvalues.




Matrix Chernoff bounds (Tropp, 2012)*.

Theorem

Theorem 32.3.1. Let Xj,..., X, be independent random n-dimensional symmetric
positive semidefinite matrices so that ||.X;|| < R almost surely. Let X = >, X; and let
Imax and min be the maximum and minimum eigenvalues of

E[X]:ZE[X;].

Then

K min
R

—€ _62 min

Pr [)\mm (Z Xl> S (1 - G)Mm,'n S n <(]__ee)1—€) S ne 2% 9
i

Hmax

eE —62 max
Pr [)\max <Z X,) Z (]. + 6)/.LmaX] S n <(]_—|—6)1+5> S ne 37?
i

Tropp, Joel A. " User-friendly tail bounds for sums of random matrices.” Foundations of
computational mathematics 12.4 (2012): 389-434.
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In a nutshell, if || Xi|| < R, we fail with probability at most ne™2r  (similar for imax)-

. wglu,v
Recall: Ly =3, ee 2“0,

Thus, we just need to choose p, , carefully, so that H%L”’V <R.

2
—€ Hmin

But first, let's take care of a little annoyance: ne™ 2r
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For PD matrices A, B,

A< B(l+¢€) = B YV2ABY2 5 (1+6)l.
For singular matrices we can use the pseudoinverse:
Ln < (1+6)le < LEPLulE? < 1+ L P LeLE?,
where LE2LE? = [E Now,

> 1= LJGr/zLGLZ/2 is a projection. Indeed,
NN = LEPLeLEPLEPLelE? = LEPLLE? = . S0 fimin = pimax = 1.

> And E [LEPLaLd?] =,



Thus, we sample matrices X as follows:

u,v

w, v 2 2
oy L L b
x\u, V) —
0 w. p. 1—py..

s that 3, e Xuw = L/ *Lule>.
Since we want ||X,,,| < R, we choose p,,, = wg(u, v)HLZ/2Lu7‘,LJGr/2H.

_2,

. 762 i i
We now fail with probability at most ne™2r ~ = ne2r (similar for pimax)-



How may edges do we pick?

Conveniently, [|LE/2L,  LE| = (64 — 6,)TLE(Sy — 6,) = Regr(u, v), which is the
effective resistance between v and v.
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How may edges do we pick?

Conveniently, [|LE/2L,  LE| = (64 — 6,)TLE(Sy — 6,) = Regr(u, v), which is the
effective resistance between v and v.

Interpretations of wg(u, v)Ref(u, v):
» probability that (u, v) appears in a random spanning tree,
» leverage score of the edge (u, v) in the incidence matrix.

SO ]E”EHH = Z(u,v)EE pu,v = Z(U,V)EE %WG(U, V)Reff(u, V) — nﬁl'




Thus, we sample about  edges in expectation, and our probability failure is at most
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Thus, we sample about  edges in expectation, and our probability failure is at most
2

new .
How to choose R?

2
_ __€
R = 3.5logn”

We have found a graph H = (V, E’) with E[|E']] = O (m) satisfying

€2

Pr [Amin (L&*LiLg/®) < (1= e)ptmin| < ne /R < pe=(Go/2)loen — 3/,

Pr [/\max (LJGF/2LHLZ/2> >(1+ 6)Mmax] < ne=/BR) < pe=(35/3)logn — ;-1/6,



There are linear-sized (O (6%)) sparsifiers! (Batson et al., 2012)2

2Batson, Joshua, Daniel A. Spielman, and Nikhil Srivastava. " Twice-ramanujan sparsifiers.” SIAM
Journal on Computing 41.6 (2012): 1704-1721.



There are linear-sized (O (6%)) sparsifiers! (Batson et al., 2012)2

Will this work with adjacency matrices?

2Batson, Joshua, Daniel A. Spielman, and Nikhil Srivastava. " Twice-ramanujan sparsifiers.” SIAM
Journal on Computing 41.6 (2012): 1704-1721.



There are linear-sized (O (6%)) sparsifiers! (Batson et al., 2012)2
Will this work with adjacency matrices?

Will this work with signed graphs?

2Batson, Joshua, Daniel A. Spielman, and Nikhil Srivastava. " Twice-ramanujan sparsifiers.” SIAM
Journal on Computing 41.6 (2012): 1704-1721.



G = (V, E). |V| = 1000.
0.75.

Edge ratio

Density: 0.05. Planted subgraph with |V/| = 100, density:

xTLx, x ~U(0, 1)"

1.01

0.8

0.6

Ratio

0.4 1

0.2

0.0

xTLx, x ~N(0, 1)"




G =(V,E). |V| =1000. Density: 0.05. Planted subgraph with |V’| = 100, density:
0.75.

xTAx, x ~ U(0, 1)"

Ratio

0.06
\5 0.05
=
. @ 004
Edge ratio °
> 003
1.01 =
O .02
(]
0.8 X oo
0.00
0.6 1 2 3 a 5 6 7 8
&
041 xTAx, x ~N(0,1)"
50
4 —_
02 O 40
o
=
(V]
0.0 o °
1 2 3 4 5 6 7 8 3 .
©
€ ko]
o 10
0
1 2 3 4 5 6 7 8



G =(V,E). |V| =1000. Density: 0.05. Planted subgraph with |V’| = 100, density:
0.75.
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Thanks!
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