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We write A− B < 0 if A− B is P.S.D.

We consider a graph G = (V ,E ) with Laplacian LG = DG − AG .

Definition: ε-approximation of a graph.

H = (V ,E ′) ε-approximates G if

(1− ε)LG 4 LH 4 (1 + ε)LG .

Implications:

I (1− ε)xTLGx 4 xTLHx 4 (1 + ε)xTLGx .

I Cuts: (1− ε)1T
S LG 1S 4 1T

S LH1S 4 (1 + ε)1T
S LG 1S .
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First step: build H randomly to preserve G in expectation.

wH(u, v) =

{
wG (u,v)

pu,v
w. p. pu,v

0 w. p. 1− pu,v .

E [LH ] =
∑

u,v∈E pu,v
wG (u,v)

pu,v
Lu,v = LG where Lu,v is the Laplacian of the graph with

unique edge u, v .

We now need Chernoff bounds for the
concentration of eigenvalues.
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Matrix Chernoff bounds (Tropp, 2012)1.

Theorem

Theorem 32.3.1. Let X1, . . . ,Xm be independent random n-dimensional symmetric
positive semidefinite matrices so that ‖Xi‖ ≤ R almost surely. Let X =

∑
i Xi and let

µmax and µmin be the maximum and minimum eigenvalues of

E [X ] =
∑

i

E [Xi ] .

Then

Pr

[
λmin

(∑
i

Xi

)
≤ (1− ε)µmin

]
≤ n

(
e−ε

(1− ε)1−ε

)µmin
R

≤ ne
−ε2µmin

2R ,

Pr

[
λmax

(∑
i

Xi

)
≥ (1 + ε)µmax

]
≤ n

(
eε

(1 + ε)1+ε

)µmax
R

≤ ne
−ε2µmax

3R

1Tropp, Joel A. ”User-friendly tail bounds for sums of random matrices.” Foundations of
computational mathematics 12.4 (2012): 389-434.



Matrix Chernoff bounds (Tropp, 2012)1.

Theorem

Theorem 32.3.1. Let X1, . . . ,Xm be independent random n-dimensional symmetric
positive semidefinite matrices so that ‖Xi‖ ≤ R almost surely. Let X =

∑
i Xi and let

µmax and µmin be the maximum and minimum eigenvalues of

E [X ] =
∑

i

E [Xi ] .

Then

Pr

[
λmin

(∑
i

Xi

)
≤ (1− ε)µmin

]
≤ n

(
e−ε

(1− ε)1−ε

)µmin
R

≤ ne
−ε2µmin

2R ,

Pr

[
λmax

(∑
i

Xi

)
≥ (1 + ε)µmax

]
≤ n

(
eε

(1 + ε)1+ε

)µmax
R

≤ ne
−ε2µmax

3R

1Tropp, Joel A. ”User-friendly tail bounds for sums of random matrices.” Foundations of
computational mathematics 12.4 (2012): 389-434.



In a nutshell, if ‖Xi‖ ≤ R, we fail with probability at most ne
−ε2µmin

2R (similar for µmax ).

Recall: LH =
∑

u,v∈E
wG (u,v)

pu,v
Lu,v .

Thus, we just need to choose pu,v carefully, so that
∥∥∥wG (u,v)

pu,v
Lu,v

∥∥∥ ≤ R.

But first, let’s take care of a little annoyance: ne
−ε2µmin

2R



For PD matrices A,B,

A 4 B(1 + ε)⇔ B−1/2AB−1/2 4 (1 + ε)I .

For singular matrices we can use the pseudoinverse:

LH 4 (1 + ε)LG ⇔ L
+/2
G LHL

+/2
G 4 (1 + ε)L

+/2
G LGL

+/2
G ,

where L
+/2
G L

+/2
G = L+G .

Now,

I Π = L
+/2
G LGL

+/2
G is a projection. Indeed,

ΠΠ = L
+/2
G LGL

+/2
G L

+/2
G LGL

+/2
G = L

+/2
G LGL

+/2
G = Π. So µmin = µmax = 1.

I And E
[
L
+/2
G LHL

+/2
G

]
= Π.
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Thus, we sample matrices X as follows:

wX (u, v) =

{
wG (u,v)

pu,v
L
+/2
G Lu,vL

+/2
G w. p. pu,v

0 w. p. 1− pu,v .

so that
∑

(u,v)∈E Xu,v = L
+/2
G LHL

+/2
G .

Since we want ‖Xu,v‖ ≤ R, we choose pu,v = 1
RwG (u, v)‖L+/2G Lu,vL

+/2
G ‖.

We now fail with probability at most ne
−ε2µmin

2R = ne
−ε2
2R (similar for µmax ).



How may edges do we pick?

Conveniently, ‖L+/2G Lu,vL
+/2
G ‖ = (δu − δv )TL+G (δu − δv ) = Reff (u, v), which is the

effective resistance between u and v .

Interpretations of wG (u, v)Reff (u, v):

I probability that (u, v) appears in a random spanning tree,

I leverage score of the edge (u, v) in the incidence matrix.

So E[|EH |] =
∑

(u,v)∈E pu,v =
∑

(u,v)∈E
1
RwG (u, v)Reff (u, v) =

n−1
R .
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Thus, we sample about n
R edges in expectation, and our probability failure is at most

ne
−ε2
2R .

How to choose R?

R = ε2

3.5 log n .

We have found a graph H = (V ,E ′) with E [|E ′|] = O
(

n log n
ε2

)
satisfying

Pr
[
λmin

(
L
+/2
G LHL

+/2
G

)
≤ (1− ε)µmin

]
≤ ne−ε

2/(2R) ≤ ne−(3.5/2) log n = n−3/4,

Pr
[
λmax

(
L
+/2
G LHL

+/2
G

)
≥ (1 + ε)µmax

]
≤ ne−ε

2/(3R) ≤ ne−(3.5/3) log n = n−1/6.
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There are linear-sized
(
O
(

n
ε2

))
sparsifiers! (Batson et al., 2012)2

Will this work with adjacency matrices?

Will this work with signed graphs?

2Batson, Joshua, Daniel A. Spielman, and Nikhil Srivastava. ”Twice-ramanujan sparsifiers.” SIAM
Journal on Computing 41.6 (2012): 1704-1721.
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G = (V ,E ). |V | = 1000. Density: 0.05. Planted subgraph with |V ′| = 100, density:
0.75.
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Thanks!
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