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Some inapproximable norms



This is the work of Alon and Naor (2004).

Definition

Cut norm: given an n ×m matrix A = (aij),

‖A‖C = max
I⊆[n],J⊆[m]

∣∣∣∣∣∣
∑

i∈I ,j∈J
aij

∣∣∣∣∣∣ .

Definition

‖A‖∞→1 = max
x∈{−1,1}n,y∈{−1,1}m

∑
i ,j

aijxiyj .

More generally,

‖A‖p→q = max
x 6=0

‖Ax‖q
‖x‖p

.
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Some simple facts first.
4‖A‖C ≥ ‖A‖∞→1 ≥ ‖A‖C .

Indeed, if xi , yj ∈ {−1, 1},

On the other hand, suppose ‖A‖C =
∑

i∈I ,j∈J aij . Let xi = 1 if i ∈ I , xi = −1
otherwise (same for yj , J).

‖A‖C =
∑
i ,j

aij
1 + xi

2

1 + yi
2

=
1

4

∑
i ,j

aij +
1

4

∑
i ,j

aijxi +
1

4

∑
i ,j

aijxj +
1

4

∑
i ,j

aijxiyj .
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Inapproximability

Computing ‖A‖C or ‖A‖∞→1 is MAXSNP-hard (no PTAS).

Proposition

Given a (weighted or unweighted) graph G = (V ,E ), there is an efficient way to
construct a real 2|E | by |V | matrix A, such that

MAXCUT (G ) = ‖A‖C = ‖A‖∞→1/4.

Therefore, the problems of computing ‖A‖C or ‖A‖∞→1 are both MAXSNP-hard.

Proof: Orient G arbitrarily. For each 1 ≤ i ≤ |E |, if ei is oriented from vj to vk ,
a2i−1,j = a2i ,k = 1 and a2i−1,k = a2i ,j = −1. The rest of A is 0.

MAXCUT = ‖A‖C = ‖A‖∞→1/4.



So we will try to approximate ‖A‖∞→1.

Note

‖A‖∞→1 = max
x ,y

∑
i ,j

aijxiyj

s.t. xi , yj ∈ {−1, 1} for all i , j ,

so we can relax:

max
{ui},{vj}

∑
i ,j

aij〈ui , vj〉

s.t. ‖ui‖ = ‖vj‖ = 1 for all i , j ,

We will use MAXSDP for the maximum of the SDP relaxation.
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The Grothendieck inequality



Theorem

Grothendieck inequality. There is a constant KR such that for any matrix A,

MAXSDP ≤ KR‖A‖∞→1.

The infimum of the satisfactory values of KR is Grothendieck’s constant.

It is known that
1.57 ≈ π

2
≤ KR <

π

2 ln(1 +
√

2)
≈ 1.78,

but the exact value is an open problem.

Let’s prove that

KR ≤
π

2 ln(1 +
√

2)
,

shall we?



Theorem

Grothendieck inequality. There is a constant KR such that for any matrix A,

MAXSDP ≤ KR‖A‖∞→1.

The infimum of the satisfactory values of KR is Grothendieck’s constant.

It is known that
1.57 ≈ π

2
≤ KR <

π

2 ln(1 +
√

2)
≈ 1.78,

but the exact value is an open problem.

Let’s prove that

KR ≤
π

2 ln(1 +
√

2)
,

shall we?



Theorem

Grothendieck inequality. There is a constant KR such that for any matrix A,

MAXSDP ≤ KR‖A‖∞→1.

The infimum of the satisfactory values of KR is Grothendieck’s constant.

It is known that
1.57 ≈ π

2
≤ KR <

π

2 ln(1 +
√

2)
≈ 1.78,

but the exact value is an open problem.

Let’s prove that

KR ≤
π

2 ln(1 +
√

2)
,

shall we?



Lemma

Grothendieck identity. Let u, v be unit vectors in a Hilbert space H. If z is a
randomly picked unit vector in H, then

E[sign(〈u, z〉)sign(〈v , z〉)] =
2

π
arcsin(〈u, v〉).

-1

-1

+1

+1

+1

+1
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The previous result is nice, because with straightforward rounding, we get

E

∑
i ,j

aijxiyj

 =
∑
i ,j

aij
2

π
arcsin(〈ui , vj〉).

But we want an equality in terms of
∑

i ,j aij〈ui , vj〉, not
∑

i ,j aijarcsin(〈ui , vj〉)!

So how nice would it be if we could find vectors u′i , v
′
j such that

arcsin(〈u′i , v ′j 〉) = c〈ui , vj〉,

for some constant c ...
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Note that our task amounts to finding vectors such that 〈u′i , v ′j 〉 = sin(c〈ui , vj〉).

Recall the Taylor expansion of the sine:

sin(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

Thus

sin(c〈ui , vj〉) =
∞∑
k=0

(−1)kc2k+1〈ui , vj〉2k+1

(2k + 1)!
.
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sin(c〈ui , vj〉) =
∑∞

k=0
(−1)kc2k+1〈ui ,vj 〉2k+1

(2k+1)! .

Let x⊗k be the k-th tensor power of x . It is 〈x⊗k , y⊗k〉 = 〈x , y〉k .

Consider the vectors T (u),S(v) defined by the following sequence:

T (u)k = (−1)k

√
c2k+1

(2k + 1)!
u⊗(2k+1)

S(v)k =

√
c2k+1

(2k + 1)!
v⊗(2k+1)

These vectors are in the Hilbert space ⊕∞k=0H
⊗(2k+1), where u, v ∈ H.

We have 〈T (u),S(v)〉 = sin(c〈ui , vj〉).
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‖T (u)‖2 = ?

sinh(c‖u‖2).

Hint: sinh(x) =
∑∞

k=0
x2k+1

(2k+1)! .

So we choose c so that sinh(c) = 1⇔ c = arcsinh(1) = log(1 +
√

2).
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We now choose a random unit vector z ∈ ⊕∞k=0H
⊗(2k+1) and set xi = sign(〈u′i , z〉),

yj = sign(〈v ′j , z〉). We have

E

∑
i ,j

aijxiyj

 =
2

π

∑
i ,j

aij arcsin(〈u′i , v ′j 〉) =
2 log(1 +

√
2)

π

∑
i ,j

aij〈ui , vj〉.

This establishes
KR ≤

π

2 log(1 +
√

2)
.

Proof due to Krivine1.

1https://www.irif.fr/~krivine/

https://www.irif.fr/~krivine/


Algorithmic applications



We have established an upper bound of Grothendieck’s constant by showing that there
exists a convenient set of vectors {u′i , v ′j } ⊂ ⊕∞k=0H

⊗(2k+1).

This suggests an algorithm to approximate ‖A‖∞→1.

1. Relax ‖A‖∞→1.

2. Solve the SDP.

3. Find {u′i , v ′j }.

4. Choose z randomly and round by setting xi = sign(〈u′i , z〉), yj = sign(〈v ′j , z〉).

But there’s a problem...

⊕∞k=0H
⊗(2k+1) is infinite-dimensional!

No problem. {u′i , v ′j } are m + n vectors, so we can find a valid set in
(m + n)-dimensional space. How?
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We now have an algorithm to approximate ‖A‖∞→1. How about ‖A‖C?

Add 1 row and 1 column to A to obtain A′:

I a′i ,m+1 = −
∑m

j=1 aij ,

I a′n+1,j = −
∑m

i=1 aij ,

I a′n+1,m+1 = 0.

It is

‖A‖C = ‖A′‖C =
1

4
‖A‖∞→1.

The last equality is because rows and columns sum to zero.
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This is just one of four approaches in the paper by Alon and Naor (2004). Check it out!



Alexander Grothendieck (1928 - 2014)



Thanks!
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