Alexander Grothendieck and some inapproximable matrix norms

Bruno Ordozgoiti ${ }^{1}$

${ }^{1}$ Aalto University

Helsinki 2020

Some inapproximable norms

This is the work of Alon and Naor (2004).

Definition

Cut norm: given an $n \times m$ matrix $A=\left(a_{i j}\right)$,

$$
\|A\|_{C}=\max _{I \subseteq[n], J \subseteq[m]}\left|\sum_{i \in I, j \in J} a_{i j}\right| .
$$

This is the work of Alon and Naor (2004).

Definition

Cut norm: given an $n \times m$ matrix $A=\left(a_{i j}\right)$,

$$
\|A\|_{C}=\max _{I \subseteq[n], J \subseteq[m]}\left|\sum_{i \in I, j \in J} a_{i j}\right| .
$$

Definition

$$
\|A\|_{\infty \rightarrow 1}=\max _{x \in\{-1,1\}^{n}, y \in\{-1,1\}^{m}} \sum_{i, j} a_{i j} x_{i} y_{j} .
$$

This is the work of Alon and Naor (2004).

Definition

Cut norm: given an $n \times m$ matrix $A=\left(a_{i j}\right)$,

$$
\|A\|_{C}=\max _{I \subseteq[n], J \subseteq[m]}\left|\sum_{i \in I, j \in J} a_{i j}\right| .
$$

Definition

$$
\|A\|_{\infty \rightarrow 1}=\max _{x \in\{-1,1\}^{n}, y \in\{-1,1\}^{m}} \sum_{i, j} a_{i j} x_{i} y_{j}
$$

More generally,

$$
\|A\|_{p \rightarrow q}=\max _{x \neq 0} \frac{\|A x\|_{q}}{\|x\|_{p}}
$$

Some simple facts first.

$$
4\|A\|_{C} \geq\|A\|_{\infty \rightarrow 1} \geq\|A\|_{C}
$$

Some simple facts first.

$$
4\|A\|_{C} \geq\|A\|_{\infty \rightarrow 1} \geq\|A\|_{C}
$$

Indeed, if $x_{i}, y_{j} \in\{-1,1\}$,

$$
\sum_{i j} a_{i j} x_{i} y_{j}=\sum_{i: x_{i}=1, j: y_{j}=1} a_{i j}-\sum_{i: x_{i}=1, j: y_{j}=-1} a_{i j}-\sum_{i: x_{i}=-1, j: y_{j}=1} a_{i j}+\sum_{i: x_{i}=-1, j: y_{j}=-1} a_{i j}
$$

Some simple facts first.

$$
4\|A\|_{C} \geq\|A\|_{\infty \rightarrow 1} \geq\|A\|_{C}
$$

Indeed, if $x_{i}, y_{j} \in\{-1,1\}$,

$$
\sum_{i j} a_{i j} x_{i} y_{j}=\sum_{\leq\|A\|_{c}}^{\sum_{i: x_{i}=1, j: y_{j}=1} a_{i j}} \underbrace{\sum_{i: x_{i}=1, j: y_{j}=-1}}_{\leq\|A\|_{c}} a_{i j} \underbrace{\sum_{i: x_{i}=-1, j: y_{j}=1}}_{\leq\|A\|_{C}} a_{i j}+\sum_{\leq\|A\|_{c}}^{\underbrace{}_{i: x_{i}=-1, j: y_{j}=-1}}
$$

Some simple facts first.

$$
4\|A\|_{C} \geq\|A\|_{\infty \rightarrow 1} \geq\|A\|_{C} .
$$

Indeed, if $x_{i}, y_{j} \in\{-1,1\}$,

$$
\sum_{i j} a_{i j} x_{i} y_{j}=\sum_{\leq\|A\|_{c}}^{\sum_{i: x_{i}=1, j: y_{j}=1} a_{i j}} \underbrace{\sum_{i: x_{i}=1, j: y_{j}=-1}}_{\leq\|A\|_{c}} a_{i j} \underbrace{\sum_{i: x_{i}=-1, j: y_{j}=1}}_{\leq\|A\|_{c}} a_{i j}+\sum_{i: x_{i}=-1, j: y_{j}=-1}
$$

On the other hand, suppose $\|A\|_{C}=\sum_{i \in I, j \in J} a_{i j}$. Let $x_{i}=1$ if $i \in I, x_{i}=-1$ otherwise (same for y_{j}, J).

$$
\begin{aligned}
\|A\|_{C} & =\sum_{i, j} a_{i j} \frac{1+x_{i}}{2} \frac{1+y_{i}}{2} \\
& =\frac{1}{4} \sum_{i, j} a_{i j}+\frac{1}{4} \sum_{i, j} a_{i j} x_{i}+\frac{1}{4} \sum_{i, j} a_{i j} x_{j}+\frac{1}{4} \sum_{i, j} a_{i j} x_{i} y_{j} .
\end{aligned}
$$

Inapproximability

Computing $\|A\|_{c}$ or $\|A\|_{\infty \rightarrow 1}$ is MAXSNP-hard (no PTAS).

Proposition

Given a (weighted or unweighted) graph $G=(V, E)$, there is an efficient way to construct a real $2|E|$ by $|V|$ matrix A, such that

$$
\operatorname{MAXCUT}(G)=\|A\|_{C}=\|A\|_{\infty \rightarrow 1} / 4
$$

Therefore, the problems of computing $\|A\|_{C}$ or $\|A\|_{\infty \rightarrow 1}$ are both MAXSNP-hard.
Proof: Orient G arbitrarily. For each $1 \leq i \leq|E|$, if e_{i} is oriented from v_{j} to v_{k}, $a_{2 i-1, j}=a_{2 i, k}=1$ and $a_{2 i-1, k}=a_{2 i, j}=-1$. The rest of A is 0 .
MAXCUT $=\|A\|_{C}=\|A\|_{\infty \rightarrow 1} / 4$.

So we will try to approximate $\|A\|_{\infty \rightarrow 1}$.
Note

$$
\begin{aligned}
\|A\|_{\infty \rightarrow 1}=\max _{x, y} & \sum_{i, j} a_{i j} x_{i} y_{j} \\
\text { s.t. } & x_{i}, y_{j} \in\{-1,1\} \text { for all } i, j,
\end{aligned}
$$

So we will try to approximate $\|A\|_{\infty \rightarrow 1}$.
Note

$$
\begin{aligned}
\|A\|_{\infty \rightarrow 1}= & \max _{x, y}
\end{aligned} \quad \sum_{i, j} a_{i j} x_{i} y_{j},
$$

so we can relax:

$$
\begin{aligned}
& \max _{\left\{u_{i}\right\},\left\{v_{j}\right\}} \sum_{i, j} a_{i j}\left\langle u_{i}, v_{j}\right\rangle \\
& \text { s.t. }\left\|u_{i}\right\|=\left\|v_{j}\right\|=1 \text { for all } i, j,
\end{aligned}
$$

We will use $M A X_{S D P}$ for the maximum of the SDP relaxation.

The Grothendieck inequality

Theorem

Grothendieck inequality. There is a constant $K_{\mathbb{R}}$ such that for any matrix A,

$$
M A X_{S D P} \leq K_{\mathbb{R}}\|A\|_{\infty \rightarrow 1} .
$$

The infimum of the satisfactory values of $K_{\mathbb{R}}$ is Grothendieck's constant.

Theorem

Grothendieck inequality. There is a constant $K_{\mathbb{R}}$ such that for any matrix A,

$$
M A X_{S D P} \leq K_{\mathbb{R}}\|A\|_{\infty \rightarrow 1}
$$

The infimum of the satisfactory values of $K_{\mathbb{R}}$ is Grothendieck's constant.
It is known that

$$
1.57 \approx \frac{\pi}{2} \leq K_{\mathbb{R}}<\frac{\pi}{2 \ln (1+\sqrt{2})} \approx 1.78
$$

but the exact value is an open problem.

Theorem

Grothendieck inequality. There is a constant $K_{\mathbb{R}}$ such that for any matrix A,

$$
M A X_{S D P} \leq K_{\mathbb{R}}\|A\|_{\infty \rightarrow 1} .
$$

The infimum of the satisfactory values of $K_{\mathbb{R}}$ is Grothendieck's constant.
It is known that

$$
1.57 \approx \frac{\pi}{2} \leq K_{\mathbb{R}}<\frac{\pi}{2 \ln (1+\sqrt{2})} \approx 1.78
$$

but the exact value is an open problem.
Let's prove that

$$
K_{\mathbb{R}} \leq \frac{\pi}{2 \ln (1+\sqrt{2})},
$$

shall we?

Lemma

Grothendieck identity. Let u, v be unit vectors in a Hilbert space H. If z is a randomly picked unit vector in H, then

$$
\mathbb{E}[\operatorname{sign}(\langle u, z\rangle) \operatorname{sign}(\langle v, z\rangle)]=\frac{2}{\pi} \arcsin (\langle u, v\rangle) .
$$

Lemma

Grothendieck identity. Let u, v be unit vectors in a Hilbert space H. If z is a randomly picked unit vector in H, then

$$
\mathbb{E}[\operatorname{sign}(\langle u, z\rangle) \operatorname{sign}(\langle v, z\rangle)]=\frac{2}{\pi} \arcsin (\langle u, v\rangle) .
$$

The previous result is nice, because with straightforward rounding, we get

$$
\mathbb{E}\left[\sum_{i, j} a_{i j} x_{i} y_{j}\right]=\sum_{i, j} a_{i j} \frac{2}{\pi} \arcsin \left(\left\langle u_{i}, v_{j}\right\rangle\right)
$$

The previous result is nice, because with straightforward rounding, we get

$$
\mathbb{E}\left[\sum_{i, j} a_{i j} x_{i} y_{j}\right]=\sum_{i, j} a_{i j} \frac{2}{\pi} \arcsin \left(\left\langle u_{i}, v_{j}\right\rangle\right)
$$

But we want an equality in terms of $\sum_{i, j} a_{i j}\left\langle u_{i}, v_{j}\right\rangle$, not $\sum_{i, j} a_{i j} \arcsin \left(\left\langle u_{i}, v_{j}\right\rangle\right)$!

The previous result is nice, because with straightforward rounding, we get

$$
\mathbb{E}\left[\sum_{i, j} a_{i j} x_{i} y_{j}\right]=\sum_{i, j} a_{i j} \frac{2}{\pi} \arcsin \left(\left\langle u_{i}, v_{j}\right\rangle\right)
$$

But we want an equality in terms of $\sum_{i, j} a_{i j}\left\langle u_{i}, v_{j}\right\rangle$, not $\sum_{i, j} a_{i j} \arcsin \left(\left\langle u_{i}, v_{j}\right\rangle\right)$! So how nice would it be if we could find vectors $u_{i}^{\prime}, v_{j}^{\prime}$ such that

$$
\arcsin \left(\left\langle u_{i}^{\prime}, v_{j}^{\prime}\right\rangle\right)=c\left\langle u_{i}, v_{j}\right\rangle
$$

for some constant c...

Note that our task amounts to finding vectors such that $\left\langle u_{i}^{\prime}, v_{j}^{\prime}\right\rangle=\sin \left(c\left\langle u_{i}, v_{j}\right\rangle\right)$.

Note that our task amounts to finding vectors such that $\left\langle u_{i}^{\prime}, v_{j}^{\prime}\right\rangle=\sin \left(c\left\langle u_{i}, v_{j}\right\rangle\right)$.
Recall the Taylor expansion of the sine:

$$
\sin (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}
$$

Note that our task amounts to finding vectors such that $\left\langle u_{i}^{\prime}, v_{j}^{\prime}\right\rangle=\sin \left(c\left\langle u_{i}, v_{j}\right\rangle\right)$.
Recall the Taylor expansion of the sine:

$$
\sin (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}
$$

Thus

$$
\sin \left(c\left\langle u_{i}, v_{j}\right\rangle\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k} c^{2 k+1}\left\langle u_{i}, v_{j}\right\rangle^{2 k+1}}{(2 k+1)!}
$$

$\sin \left(c\left\langle u_{i}, v_{j}\right\rangle\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k} c^{2 k+1}\left\langle u_{i}, v_{j}\right\rangle^{2 k+1}}{(2 k+1)!}$.
$\sin \left(c\left\langle u_{i}, v_{j}\right\rangle\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k} c^{2 k+1}\left\langle u_{i}, v_{j}\right)^{2 k+1}}{(2 k+1)!}$.
Let $x^{\otimes k}$ be the k-th tensor power of x. It is $\left\langle x^{\otimes k}, y^{\otimes k}\right\rangle=\langle x, y\rangle^{k}$.
$\sin \left(c\left\langle u_{i}, v_{j}\right\rangle\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k} c^{2 k+1}\left\langle u_{i}, v_{j}\right\rangle^{2 k+1}}{(2 k+1)!}$.
Let $x^{\otimes k}$ be the k-th tensor power of x. It is $\left\langle x^{\otimes k}, y^{\otimes k}\right\rangle=\langle x, y\rangle^{k}$.
Consider the vectors $T(u), S(v)$ defined by the following sequence:

$$
\begin{aligned}
& T(u)_{k}=(-1)^{k} \sqrt{\frac{c^{2 k+1}}{(2 k+1)!}} u^{\otimes(2 k+1)} \\
& S(v)_{k}=\sqrt{\frac{c^{2 k+1}}{(2 k+1)!}} v^{\otimes(2 k+1)}
\end{aligned}
$$

These vectors are in the Hilbert space $\oplus_{k=0}^{\infty} H^{\otimes(2 k+1)}$, where $u, v \in H$.
$\sin \left(c\left\langle u_{i}, v_{j}\right\rangle\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k} c^{2 k+1}\left\langle u_{i}, v_{j}\right\rangle^{2 k+1}}{(2 k+1)!}$.
Let $x^{\otimes k}$ be the k-th tensor power of x. It is $\left\langle x^{\otimes k}, y^{\otimes k}\right\rangle=\langle x, y\rangle^{k}$.
Consider the vectors $T(u), S(v)$ defined by the following sequence:

$$
\begin{aligned}
& T(u)_{k}=(-1)^{k} \sqrt{\frac{c^{2 k+1}}{(2 k+1)!}} u^{\otimes(2 k+1)} \\
& S(v)_{k}=\sqrt{\frac{c^{2 k+1}}{(2 k+1)!}} v^{\otimes(2 k+1)}
\end{aligned}
$$

These vectors are in the Hilbert space $\oplus_{k=0}^{\infty} H^{\otimes(2 k+1)}$, where $u, v \in H$.

$$
\text { We have }\langle T(u), S(v)\rangle=\sin \left(c\left\langle u_{i}, v_{j}\right\rangle\right)
$$

$$
\|T(u)\|^{2}=?
$$

$$
\|T(u)\|^{2}=?
$$

Hint: $\sinh (x)=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}$.

$$
\|T(u)\|^{2}=\sinh \left(c\|u\|^{2}\right)
$$

Hint: $\sinh (x)=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}$.

$$
\|T(u)\|^{2}=\sinh \left(c\|u\|^{2}\right)
$$

Hint: $\sinh (x)=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}$.
So we choose c so that $\sinh (c)=1 \Leftrightarrow c=\operatorname{arcsinh}(1)=\log (1+\sqrt{2})$.

We now choose a random unit vector $z \in \oplus_{k=0}^{\infty} H^{\otimes(2 k+1)}$ and set $x_{i}=\operatorname{sign}\left(\left\langle u_{i}^{\prime}, z\right\rangle\right)$, $y_{j}=\operatorname{sign}\left(\left\langle v_{j}^{\prime}, z\right\rangle\right)$. We have

$$
\mathbb{E}\left[\sum_{i, j} a_{i j} x_{i} y_{j}\right]=\frac{2}{\pi} \sum_{i, j} a_{i j} \arcsin \left(\left\langle u_{i}^{\prime}, v_{j}^{\prime}\right\rangle\right)=\frac{2 \log (1+\sqrt{2})}{\pi} \sum_{i, j} a_{i j}\left\langle u_{i}, v_{j}\right\rangle
$$

This establishes

$$
K_{\mathbb{R}} \leq \frac{\pi}{2 \log (1+\sqrt{2})}
$$

Proof due to Krivine ${ }^{1}$.

[^0]Algorithmic applications

We have established an upper bound of Grothendieck's constant by showing that there exists a convenient set of vectors $\left\{u_{i}^{\prime}, v_{j}^{\prime}\right\} \subset \oplus_{k=0}^{\infty} H^{\otimes(2 k+1)}$.

This suggests an algorithm to approximate $\|A\|_{\infty \rightarrow 1}$.

1. Relax $\|A\|_{\infty \rightarrow 1}$.
2. Solve the SDP.
3. Find $\left\{u_{i}^{\prime}, v_{j}^{\prime}\right\}$.
4. Choose z randomly and round by setting $x_{i}=\operatorname{sign}\left(\left\langle u_{i}^{\prime}, z\right\rangle\right), y_{j}=\operatorname{sign}\left(\left\langle v_{j}^{\prime}, z\right\rangle\right)$.

But there's a problem...

We have established an upper bound of Grothendieck's constant by showing that there exists a convenient set of vectors $\left\{u_{i}^{\prime}, v_{j}^{\prime}\right\} \subset \oplus_{k=0}^{\infty} H^{\otimes(2 k+1)}$.
This suggests an algorithm to approximate $\|A\|_{\infty \rightarrow 1}$.

1. Relax $\|A\|_{\infty \rightarrow 1}$.
2. Solve the SDP.
3. Find $\left\{u_{i}^{\prime}, v_{j}^{\prime}\right\}$.
4. Choose z randomly and round by setting $x_{i}=\operatorname{sign}\left(\left\langle u_{i}^{\prime}, z\right\rangle\right), y_{j}=\operatorname{sign}\left(\left\langle v_{j}^{\prime}, z\right\rangle\right)$.

But there's a problem... $\oplus_{k=0}^{\infty} H^{\otimes(2 k+1)}$ is infinite-dimensional!

We have established an upper bound of Grothendieck's constant by showing that there exists a convenient set of vectors $\left\{u_{i}^{\prime}, v_{j}^{\prime}\right\} \subset \oplus_{k=0}^{\infty} H^{\otimes(2 k+1)}$.
This suggests an algorithm to approximate $\|A\|_{\infty \rightarrow 1}$.

1. Relax $\|A\|_{\infty \rightarrow 1}$.
2. Solve the SDP.
3. Find $\left\{u_{i}^{\prime}, v_{j}^{\prime}\right\}$.
4. Choose z randomly and round by setting $x_{i}=\operatorname{sign}\left(\left\langle u_{i}^{\prime}, z\right\rangle\right), y_{j}=\operatorname{sign}\left(\left\langle v_{j}^{\prime}, z\right\rangle\right)$.

But there's a problem... $\oplus_{k=0}^{\infty} H^{\otimes(2 k+1)}$ is infinite-dimensional!
No problem. $\left\{u_{i}^{\prime}, v_{j}^{\prime}\right\}$ are $m+n$ vectors, so we can find a valid set in $(m+n)$-dimensional space. How?

We now have an algorithm to approximate $\|A\|_{\infty \rightarrow 1}$. How about $\|A\|_{C}$?

We now have an algorithm to approximate $\|A\|_{\infty \rightarrow 1}$. How about $\|A\|_{C}$?
Add 1 row and 1 column to A to obtain A^{\prime} :

- $a_{i, m+1}^{\prime}=-\sum_{j=1}^{m} a_{i j}$,
- $a_{n+1, j}^{\prime}=-\sum_{i=1}^{m} a_{i j}$,
- $a_{n+1, m+1}^{\prime}=0$.

We now have an algorithm to approximate $\|A\|_{\infty \rightarrow 1}$. How about $\|A\|_{c}$?
Add 1 row and 1 column to A to obtain A^{\prime} :

- $a_{i, m+1}^{\prime}=-\sum_{j=1}^{m} a_{i j}$,
- $a_{n+1, j}^{\prime}=-\sum_{i=1}^{m} a_{i j}$,
- $a_{n+1, m+1}^{\prime}=0$.

It is

$$
\|A\|_{C}=\left\|A^{\prime}\right\|_{C}=\frac{1}{4}\|A\|_{\infty \rightarrow 1}
$$

The last equality is because rows and columns sum to zero.

This is just one of four approaches in the paper by Alon and Naor (2004). Check it out!

Alexander Grothendieck (1928-2014)

Thanks!

References I

Alon, N. and Naor, A. (2004). Approximating the cut-norm via grothendieck's inequality. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 72-80.

[^0]: ${ }^{1}$ https://www.irif.fr/~krivine/

