
Alexander Grothendieck and some inapproximable matrix norms

Bruno Ordozgoiti1

1Aalto University

Helsinki 2020

Some inapproximable norms

This is the work of Alon and Naor (2004).

Definition

Cut norm: given an n ×m matrix A = (aij),

‖A‖C = max
I⊆[n],J⊆[m]

∣∣∣∣∣∣
∑

i∈I ,j∈J
aij

∣∣∣∣∣∣ .

Definition

‖A‖∞→1 = max
x∈{−1,1}n,y∈{−1,1}m

∑
i ,j

aijxiyj .

More generally,

‖A‖p→q = max
x 6=0

‖Ax‖q
‖x‖p

.

This is the work of Alon and Naor (2004).

Definition

Cut norm: given an n ×m matrix A = (aij),

‖A‖C = max
I⊆[n],J⊆[m]

∣∣∣∣∣∣
∑

i∈I ,j∈J
aij

∣∣∣∣∣∣ .
Definition

‖A‖∞→1 = max
x∈{−1,1}n,y∈{−1,1}m

∑
i ,j

aijxiyj .

More generally,

‖A‖p→q = max
x 6=0

‖Ax‖q
‖x‖p

.

This is the work of Alon and Naor (2004).

Definition

Cut norm: given an n ×m matrix A = (aij),

‖A‖C = max
I⊆[n],J⊆[m]

∣∣∣∣∣∣
∑

i∈I ,j∈J
aij

∣∣∣∣∣∣ .
Definition

‖A‖∞→1 = max
x∈{−1,1}n,y∈{−1,1}m

∑
i ,j

aijxiyj .

More generally,

‖A‖p→q = max
x 6=0

‖Ax‖q
‖x‖p

.

Some simple facts first.
4‖A‖C ≥ ‖A‖∞→1 ≥ ‖A‖C .

Indeed, if xi , yj ∈ {−1, 1},

On the other hand, suppose ‖A‖C =
∑

i∈I ,j∈J aij . Let xi = 1 if i ∈ I , xi = −1
otherwise (same for yj , J).

‖A‖C =
∑
i ,j

aij
1 + xi

2

1 + yi
2

=
1

4

∑
i ,j

aij +
1

4

∑
i ,j

aijxi +
1

4

∑
i ,j

aijxj +
1

4

∑
i ,j

aijxiyj .

Some simple facts first.
4‖A‖C ≥ ‖A‖∞→1 ≥ ‖A‖C .

Indeed, if xi , yj ∈ {−1, 1},

∑
ij

aijxiyj =
∑

i :xi=1,j :yj=1

aij −
∑

i :xi=1,j :yj=−1
aij −

∑
i :xi=−1,j :yj=1

aij +
∑

i :xi=−1,j :yj=−1
aij .

On the other hand, suppose ‖A‖C =
∑

i∈I ,j∈J aij . Let xi = 1 if i ∈ I , xi = −1
otherwise (same for yj , J).

‖A‖C =
∑
i ,j

aij
1 + xi

2

1 + yi
2

=
1

4

∑
i ,j

aij +
1

4

∑
i ,j

aijxi +
1

4

∑
i ,j

aijxj +
1

4

∑
i ,j

aijxiyj .

Some simple facts first.
4‖A‖C ≥ ‖A‖∞→1 ≥ ‖A‖C .

Indeed, if xi , yj ∈ {−1, 1},

∑
ij

aijxiyj =
∑

i :xi=1,j :yj=1

aij︸ ︷︷ ︸
≤‖A‖C

−
∑

i :xi=1,j :yj=−1
aij︸ ︷︷ ︸

≤‖A‖C

−
∑

i :xi=−1,j :yj=1

aij︸ ︷︷ ︸
≤‖A‖C

+
∑

i :xi=−1,j :yj=−1
aij︸ ︷︷ ︸

≤‖A‖C

.

On the other hand, suppose ‖A‖C =
∑

i∈I ,j∈J aij . Let xi = 1 if i ∈ I , xi = −1
otherwise (same for yj , J).

‖A‖C =
∑
i ,j

aij
1 + xi

2

1 + yi
2

=
1

4

∑
i ,j

aij +
1

4

∑
i ,j

aijxi +
1

4

∑
i ,j

aijxj +
1

4

∑
i ,j

aijxiyj .

Some simple facts first.
4‖A‖C ≥ ‖A‖∞→1 ≥ ‖A‖C .

Indeed, if xi , yj ∈ {−1, 1},

∑
ij

aijxiyj =
∑

i :xi=1,j :yj=1

aij︸ ︷︷ ︸
≤‖A‖C

−
∑

i :xi=1,j :yj=−1
aij︸ ︷︷ ︸

≤‖A‖C

−
∑

i :xi=−1,j :yj=1

aij︸ ︷︷ ︸
≤‖A‖C

+
∑

i :xi=−1,j :yj=−1
aij︸ ︷︷ ︸

≤‖A‖C

.

On the other hand, suppose ‖A‖C =
∑

i∈I ,j∈J aij . Let xi = 1 if i ∈ I , xi = −1
otherwise (same for yj , J).

‖A‖C =
∑
i ,j

aij
1 + xi

2

1 + yi
2

=
1

4

∑
i ,j

aij +
1

4

∑
i ,j

aijxi +
1

4

∑
i ,j

aijxj +
1

4

∑
i ,j

aijxiyj .

Inapproximability

Computing ‖A‖C or ‖A‖∞→1 is MAXSNP-hard (no PTAS).

Proposition

Given a (weighted or unweighted) graph G = (V ,E), there is an efficient way to
construct a real 2|E | by |V | matrix A, such that

MAXCUT (G) = ‖A‖C = ‖A‖∞→1/4.

Therefore, the problems of computing ‖A‖C or ‖A‖∞→1 are both MAXSNP-hard.

Proof: Orient G arbitrarily. For each 1 ≤ i ≤ |E |, if ei is oriented from vj to vk ,
a2i−1,j = a2i ,k = 1 and a2i−1,k = a2i ,j = −1. The rest of A is 0.

MAXCUT = ‖A‖C = ‖A‖∞→1/4.

So we will try to approximate ‖A‖∞→1.

Note

‖A‖∞→1 = max
x ,y

∑
i ,j

aijxiyj

s.t. xi , yj ∈ {−1, 1} for all i , j ,

so we can relax:

max
{ui},{vj}

∑
i ,j

aij〈ui , vj〉

s.t. ‖ui‖ = ‖vj‖ = 1 for all i , j ,

We will use MAXSDP for the maximum of the SDP relaxation.

So we will try to approximate ‖A‖∞→1.

Note

‖A‖∞→1 = max
x ,y

∑
i ,j

aijxiyj

s.t. xi , yj ∈ {−1, 1} for all i , j ,

so we can relax:

max
{ui},{vj}

∑
i ,j

aij〈ui , vj〉

s.t. ‖ui‖ = ‖vj‖ = 1 for all i , j ,

We will use MAXSDP for the maximum of the SDP relaxation.

The Grothendieck inequality

Theorem

Grothendieck inequality. There is a constant KR such that for any matrix A,

MAXSDP ≤ KR‖A‖∞→1.

The infimum of the satisfactory values of KR is Grothendieck’s constant.

It is known that
1.57 ≈ π

2
≤ KR <

π

2 ln(1 +
√

2)
≈ 1.78,

but the exact value is an open problem.

Let’s prove that

KR ≤
π

2 ln(1 +
√

2)
,

shall we?

Theorem

Grothendieck inequality. There is a constant KR such that for any matrix A,

MAXSDP ≤ KR‖A‖∞→1.

The infimum of the satisfactory values of KR is Grothendieck’s constant.

It is known that
1.57 ≈ π

2
≤ KR <

π

2 ln(1 +
√

2)
≈ 1.78,

but the exact value is an open problem.

Let’s prove that

KR ≤
π

2 ln(1 +
√

2)
,

shall we?

Theorem

Grothendieck inequality. There is a constant KR such that for any matrix A,

MAXSDP ≤ KR‖A‖∞→1.

The infimum of the satisfactory values of KR is Grothendieck’s constant.

It is known that
1.57 ≈ π

2
≤ KR <

π

2 ln(1 +
√

2)
≈ 1.78,

but the exact value is an open problem.

Let’s prove that

KR ≤
π

2 ln(1 +
√

2)
,

shall we?

Lemma

Grothendieck identity. Let u, v be unit vectors in a Hilbert space H. If z is a
randomly picked unit vector in H, then

E[sign(〈u, z〉)sign(〈v , z〉)] =
2

π
arcsin(〈u, v〉).

-1

-1

+1

+1

+1

+1

Lemma

Grothendieck identity. Let u, v be unit vectors in a Hilbert space H. If z is a
randomly picked unit vector in H, then

E[sign(〈u, z〉)sign(〈v , z〉)] =
2

π
arcsin(〈u, v〉).

-1

-1

+1

+1

+1

+1

The previous result is nice, because with straightforward rounding, we get

E

∑
i ,j

aijxiyj

 =
∑
i ,j

aij
2

π
arcsin(〈ui , vj〉).

But we want an equality in terms of
∑

i ,j aij〈ui , vj〉, not
∑

i ,j aijarcsin(〈ui , vj〉)!

So how nice would it be if we could find vectors u′i , v
′
j such that

arcsin(〈u′i , v ′j 〉) = c〈ui , vj〉,

for some constant c ...

The previous result is nice, because with straightforward rounding, we get

E

∑
i ,j

aijxiyj

 =
∑
i ,j

aij
2

π
arcsin(〈ui , vj〉).

But we want an equality in terms of
∑

i ,j aij〈ui , vj〉, not
∑

i ,j aijarcsin(〈ui , vj〉)!

So how nice would it be if we could find vectors u′i , v
′
j such that

arcsin(〈u′i , v ′j 〉) = c〈ui , vj〉,

for some constant c ...

The previous result is nice, because with straightforward rounding, we get

E

∑
i ,j

aijxiyj

 =
∑
i ,j

aij
2

π
arcsin(〈ui , vj〉).

But we want an equality in terms of
∑

i ,j aij〈ui , vj〉, not
∑

i ,j aijarcsin(〈ui , vj〉)!

So how nice would it be if we could find vectors u′i , v
′
j such that

arcsin(〈u′i , v ′j 〉) = c〈ui , vj〉,

for some constant c ...

Note that our task amounts to finding vectors such that 〈u′i , v ′j 〉 = sin(c〈ui , vj〉).

Recall the Taylor expansion of the sine:

sin(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

Thus

sin(c〈ui , vj〉) =
∞∑
k=0

(−1)kc2k+1〈ui , vj〉2k+1

(2k + 1)!
.

Note that our task amounts to finding vectors such that 〈u′i , v ′j 〉 = sin(c〈ui , vj〉).

Recall the Taylor expansion of the sine:

sin(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

Thus

sin(c〈ui , vj〉) =
∞∑
k=0

(−1)kc2k+1〈ui , vj〉2k+1

(2k + 1)!
.

Note that our task amounts to finding vectors such that 〈u′i , v ′j 〉 = sin(c〈ui , vj〉).

Recall the Taylor expansion of the sine:

sin(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

Thus

sin(c〈ui , vj〉) =
∞∑
k=0

(−1)kc2k+1〈ui , vj〉2k+1

(2k + 1)!
.

sin(c〈ui , vj〉) =
∑∞

k=0
(−1)kc2k+1〈ui ,vj 〉2k+1

(2k+1)! .

Let x⊗k be the k-th tensor power of x . It is 〈x⊗k , y⊗k〉 = 〈x , y〉k .

Consider the vectors T (u),S(v) defined by the following sequence:

T (u)k = (−1)k

√
c2k+1

(2k + 1)!
u⊗(2k+1)

S(v)k =

√
c2k+1

(2k + 1)!
v⊗(2k+1)

These vectors are in the Hilbert space ⊕∞k=0H
⊗(2k+1), where u, v ∈ H.

We have 〈T (u),S(v)〉 = sin(c〈ui , vj〉).

sin(c〈ui , vj〉) =
∑∞

k=0
(−1)kc2k+1〈ui ,vj 〉2k+1

(2k+1)! .

Let x⊗k be the k-th tensor power of x . It is 〈x⊗k , y⊗k〉 = 〈x , y〉k .

Consider the vectors T (u),S(v) defined by the following sequence:

T (u)k = (−1)k

√
c2k+1

(2k + 1)!
u⊗(2k+1)

S(v)k =

√
c2k+1

(2k + 1)!
v⊗(2k+1)

These vectors are in the Hilbert space ⊕∞k=0H
⊗(2k+1), where u, v ∈ H.

We have 〈T (u),S(v)〉 = sin(c〈ui , vj〉).

sin(c〈ui , vj〉) =
∑∞

k=0
(−1)kc2k+1〈ui ,vj 〉2k+1

(2k+1)! .

Let x⊗k be the k-th tensor power of x . It is 〈x⊗k , y⊗k〉 = 〈x , y〉k .

Consider the vectors T (u),S(v) defined by the following sequence:

T (u)k = (−1)k

√
c2k+1

(2k + 1)!
u⊗(2k+1)

S(v)k =

√
c2k+1

(2k + 1)!
v⊗(2k+1)

These vectors are in the Hilbert space ⊕∞k=0H
⊗(2k+1), where u, v ∈ H.

We have 〈T (u),S(v)〉 = sin(c〈ui , vj〉).

sin(c〈ui , vj〉) =
∑∞

k=0
(−1)kc2k+1〈ui ,vj 〉2k+1

(2k+1)! .

Let x⊗k be the k-th tensor power of x . It is 〈x⊗k , y⊗k〉 = 〈x , y〉k .

Consider the vectors T (u),S(v) defined by the following sequence:

T (u)k = (−1)k

√
c2k+1

(2k + 1)!
u⊗(2k+1)

S(v)k =

√
c2k+1

(2k + 1)!
v⊗(2k+1)

These vectors are in the Hilbert space ⊕∞k=0H
⊗(2k+1), where u, v ∈ H.

We have 〈T (u), S(v)〉 = sin(c〈ui , vj〉).

‖T (u)‖2 = ?

sinh(c‖u‖2).

Hint: sinh(x) =
∑∞

k=0
x2k+1

(2k+1)! .

So we choose c so that sinh(c) = 1⇔ c = arcsinh(1) = log(1 +
√

2).

‖T (u)‖2 = ?

sinh(c‖u‖2).

Hint: sinh(x) =
∑∞

k=0
x2k+1

(2k+1)! .

So we choose c so that sinh(c) = 1⇔ c = arcsinh(1) = log(1 +
√

2).

‖T (u)‖2 =

?

sinh(c‖u‖2).

Hint: sinh(x) =
∑∞

k=0
x2k+1

(2k+1)! .

So we choose c so that sinh(c) = 1⇔ c = arcsinh(1) = log(1 +
√

2).

‖T (u)‖2 =

?

sinh(c‖u‖2).

Hint: sinh(x) =
∑∞

k=0
x2k+1

(2k+1)! .

So we choose c so that sinh(c) = 1⇔ c = arcsinh(1) = log(1 +
√

2).

We now choose a random unit vector z ∈ ⊕∞k=0H
⊗(2k+1) and set xi = sign(〈u′i , z〉),

yj = sign(〈v ′j , z〉). We have

E

∑
i ,j

aijxiyj

 =
2

π

∑
i ,j

aij arcsin(〈u′i , v ′j 〉) =
2 log(1 +

√
2)

π

∑
i ,j

aij〈ui , vj〉.

This establishes
KR ≤

π

2 log(1 +
√

2)
.

Proof due to Krivine1.

1https://www.irif.fr/~krivine/

https://www.irif.fr/~krivine/

Algorithmic applications

We have established an upper bound of Grothendieck’s constant by showing that there
exists a convenient set of vectors {u′i , v ′j } ⊂ ⊕∞k=0H

⊗(2k+1).

This suggests an algorithm to approximate ‖A‖∞→1.

1. Relax ‖A‖∞→1.

2. Solve the SDP.

3. Find {u′i , v ′j }.

4. Choose z randomly and round by setting xi = sign(〈u′i , z〉), yj = sign(〈v ′j , z〉).

But there’s a problem...

⊕∞k=0H
⊗(2k+1) is infinite-dimensional!

No problem. {u′i , v ′j } are m + n vectors, so we can find a valid set in
(m + n)-dimensional space. How?

We have established an upper bound of Grothendieck’s constant by showing that there
exists a convenient set of vectors {u′i , v ′j } ⊂ ⊕∞k=0H

⊗(2k+1).

This suggests an algorithm to approximate ‖A‖∞→1.

1. Relax ‖A‖∞→1.

2. Solve the SDP.

3. Find {u′i , v ′j }.

4. Choose z randomly and round by setting xi = sign(〈u′i , z〉), yj = sign(〈v ′j , z〉).

But there’s a problem... ⊕∞k=0H
⊗(2k+1) is infinite-dimensional!

No problem. {u′i , v ′j } are m + n vectors, so we can find a valid set in
(m + n)-dimensional space. How?

We have established an upper bound of Grothendieck’s constant by showing that there
exists a convenient set of vectors {u′i , v ′j } ⊂ ⊕∞k=0H

⊗(2k+1).

This suggests an algorithm to approximate ‖A‖∞→1.

1. Relax ‖A‖∞→1.

2. Solve the SDP.

3. Find {u′i , v ′j }.

4. Choose z randomly and round by setting xi = sign(〈u′i , z〉), yj = sign(〈v ′j , z〉).

But there’s a problem... ⊕∞k=0H
⊗(2k+1) is infinite-dimensional!

No problem. {u′i , v ′j } are m + n vectors, so we can find a valid set in
(m + n)-dimensional space. How?

We now have an algorithm to approximate ‖A‖∞→1. How about ‖A‖C?

Add 1 row and 1 column to A to obtain A′:

I a′i ,m+1 = −
∑m

j=1 aij ,

I a′n+1,j = −
∑m

i=1 aij ,

I a′n+1,m+1 = 0.

It is

‖A‖C = ‖A′‖C =
1

4
‖A‖∞→1.

The last equality is because rows and columns sum to zero.

We now have an algorithm to approximate ‖A‖∞→1. How about ‖A‖C?

Add 1 row and 1 column to A to obtain A′:

I a′i ,m+1 = −
∑m

j=1 aij ,

I a′n+1,j = −
∑m

i=1 aij ,

I a′n+1,m+1 = 0.

It is

‖A‖C = ‖A′‖C =
1

4
‖A‖∞→1.

The last equality is because rows and columns sum to zero.

We now have an algorithm to approximate ‖A‖∞→1. How about ‖A‖C?

Add 1 row and 1 column to A to obtain A′:

I a′i ,m+1 = −
∑m

j=1 aij ,

I a′n+1,j = −
∑m

i=1 aij ,

I a′n+1,m+1 = 0.

It is

‖A‖C = ‖A′‖C =
1

4
‖A‖∞→1.

The last equality is because rows and columns sum to zero.

This is just one of four approaches in the paper by Alon and Naor (2004). Check it out!

Alexander Grothendieck (1928 - 2014)

Thanks!

References I

Alon, N. and Naor, A. (2004). Approximating the cut-norm via grothendieck’s
inequality. In Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, pages 72–80.

	Some inapproximable norms
	The Grothendieck inequality
	Algorithmic applications

