Alexander Grothendieck and some inapproximable matrix norms

Bruno Ordozgoiti¹

¹Aalto University

Helsinki 2020

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Some inapproximable norms

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

This is the work of Alon and Naor (2004).

Definition

Cut norm: given an $n \times m$ matrix $A = (a_{ij})$,

$$\|A\|_{C} = \max_{I \subseteq [n], J \subseteq [m]} \left| \sum_{i \in I, j \in J} a_{ij} \right|.$$

This is the work of Alon and Naor (2004).

Definition

Cut norm: given an $n \times m$ matrix $A = (a_{ij})$,

$$|A||_{\mathcal{C}} = \max_{I \subseteq [n], J \subseteq [m]} \left| \sum_{i \in I, j \in J} a_{ij} \right|.$$

Definition

$$\|A\|_{\infty \to 1} = \max_{x \in \{-1,1\}^n, y \in \{-1,1\}^m} \sum_{i,j} a_{ij} x_i y_j.$$

This is the work of Alon and Naor (2004).

Definition

Cut norm: given an $n \times m$ matrix $A = (a_{ij})$,

$$|A||_{C} = \max_{I \subseteq [n], J \subseteq [m]} \left| \sum_{i \in I, j \in J} a_{ij} \right|.$$

Definition

$$\|A\|_{\infty \to 1} = \max_{x \in \{-1,1\}^n, y \in \{-1,1\}^m} \sum_{i,j} a_{ij} x_i y_j.$$

More generally,

$$||A||_{p \to q} = \max_{x \neq 0} \frac{||Ax||_q}{||x||_p}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 $4\|A\|_{C} \geq \|A\|_{\infty \to 1} \geq \|A\|_{C}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

$$4\|A\|_{C} \geq \|A\|_{\infty \to 1} \geq \|A\|_{C}.$$

Indeed, if $x_i, y_j \in \{-1, 1\}$,

$$\sum_{ij} a_{ij} x_i y_j = \sum_{i:x_i=1, j: y_j=1} a_{ij} - \sum_{i:x_i=1, j: y_j=-1} a_{ij} - \sum_{i:x_i=-1, j: y_j=1} a_{ij} + \sum_{i:x_i=-1, j: y_j=-1} a_{ij}.$$

$$4\|A\|_{C} \geq \|A\|_{\infty \to 1} \geq \|A\|_{C}.$$

Indeed, if $x_i, y_j \in \{-1, 1\}$,

$$\sum_{ij} a_{ij} x_i y_j = \underbrace{\sum_{i:x_i=1, j: y_j=1} a_{ij}}_{\leq ||A||_C} \underbrace{-\sum_{i:x_i=1, j: y_j=-1} a_{ij}}_{\leq ||A||_C} \underbrace{-\sum_{i:x_i=-1, j: y_j=1} a_{ij}}_{\leq ||A||_C} \underbrace{-\sum_{i:x_i=-1, j: y_j=-1} a_{ij}}_{\leq ||A||_C} \underbrace{-\sum_{i:x_i=-1, j: y_i=-1} a_{ij}}_{\leq ||A||_C} \underbrace{-\sum$$

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

$$4\|A\|_{C} \geq \|A\|_{\infty \to 1} \geq \|A\|_{C}.$$

Indeed, if $x_i, y_j \in \{-1, 1\}$,

$$\sum_{ij} a_{ij} x_i y_j = \underbrace{\sum_{i:x_i=1, j: y_j=1} a_{ij}}_{\leq ||A||_C} \underbrace{-\sum_{i:x_i=1, j: y_j=-1} a_{ij}}_{\leq ||A||_C} \underbrace{-\sum_{i:x_i=-1, j: y_j=1} a_{ij}}_{\leq ||A||_C} \underbrace{+\sum_{i:x_i=-1, j: y_j=-1} a_{ij}}_{\leq ||A||_C} \underbrace{-\sum_{i:x_i=-1, j: y_i=-1} a_{ij}}_{\leq ||A||_C} \underbrace{-\sum$$

On the other hand, suppose $||A||_C = \sum_{i \in I, j \in J} a_{ij}$. Let $x_i = 1$ if $i \in I$, $x_i = -1$ otherwise (same for y_j, J).

$$\|A\|_{C} = \sum_{i,j} a_{ij} \frac{1+x_{i}}{2} \frac{1+y_{i}}{2}$$
$$= \frac{1}{4} \sum_{i,j} a_{ij} + \frac{1}{4} \sum_{i,j} a_{ij} x_{i} + \frac{1}{4} \sum_{i,j} a_{ij} x_{j} + \frac{1}{4} \sum_{i,j} a_{ij} x_{i} y_{j}.$$

Inapproximability

Computing $||A||_C$ or $||A||_{\infty \to 1}$ is MAXSNP-hard (no PTAS).

Proposition

Given a (weighted or unweighted) graph G = (V, E), there is an efficient way to construct a real 2|E| by |V| matrix A, such that

$$MAXCUT(G) = ||A||_{C} = ||A||_{\infty \to 1}/4.$$

Therefore, the problems of computing $||A||_C$ or $||A||_{\infty \to 1}$ are both MAXSNP-hard.

Proof: Orient G arbitrarily. For each $1 \le i \le |E|$, if e_i is oriented from v_j to v_k , $a_{2i-1,j} = a_{2i,k} = 1$ and $a_{2i-1,k} = a_{2i,j} = -1$. The rest of A is 0. $MAXCUT = ||A||_C = ||A||_{\infty \to 1}/4$. So we will try to approximate $\|A\|_{\infty \to 1}$.

Note

$$\|A\|_{\infty
ightarrow 1}=\max_{x,y}\quad\sum_{i,j}a_{ij}x_iy_j$$
s.t. $x_i,y_j\in\{-1,1\}$ for all $i,j,j\in\{-1,1\}$

So we will try to approximate $\|A\|_{\infty \to 1}$.

Note

$$\begin{split} \|A\|_{\infty o 1} = \max_{x,y} \quad \sum_{i,j} a_{ij} x_i y_j \ ext{ s.t. } \quad x_i,y_j \in \{-1,1\} ext{ for all } i,j, \end{split}$$

so we can relax:

$$\begin{array}{ll} \max_{\{u_i\},\{v_j\}} & \sum_{i,j} a_{ij} \langle u_i,v_j \rangle \\ \text{s.t.} & \|u_i\| = \|v_j\| = 1 \text{ for all } i,j, \end{array}$$

We will use MAX_{SDP} for the maximum of the SDP relaxation.

The Grothendieck inequality

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem

Grothendieck inequality. There is a constant $K_{\mathbb{R}}$ such that for any matrix A,

 $MAX_{SDP} \leq K_{\mathbb{R}} \|A\|_{\infty \to 1}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The infimum of the satisfactory values of $\mathcal{K}_{\mathbb{R}}$ is Grothendieck's constant.

Theorem

Grothendieck inequality. There is a constant $K_{\mathbb{R}}$ such that for any matrix A,

 $MAX_{SDP} \leq K_{\mathbb{R}} \|A\|_{\infty \to 1}.$

The infimum of the satisfactory values of $\mathcal{K}_{\mathbb{R}}$ is Grothendieck's constant.

It is known that

$$1.57pproxrac{\pi}{2}\leq \mathcal{K}_{\mathbb{R}}<rac{\pi}{2\ln(1+\sqrt{2})}pprox1.78,$$

but the exact value is an open problem.

Theorem

Grothendieck inequality. There is a constant $K_{\mathbb{R}}$ such that for any matrix A,

 $MAX_{SDP} \leq K_{\mathbb{R}} \|A\|_{\infty \to 1}.$

The infimum of the satisfactory values of $\mathcal{K}_{\mathbb{R}}$ is Grothendieck's constant.

It is known that

$$1.57pproxrac{\pi}{2}\leq \mathcal{K}_{\mathbb{R}}<rac{\pi}{2\ln(1+\sqrt{2})}pprox1.78,$$

but the exact value is an open problem.

Let's prove that

$$\mathcal{K}_{\mathbb{R}} \leq rac{\pi}{2\ln(1+\sqrt{2})},$$

shall we?

Lemma

Grothendieck identity. Let u, v be unit vectors in a Hilbert space H. If z is a randomly picked unit vector in H, then

$$\mathbb{E}[sign(\langle u, z \rangle) sign(\langle v, z \rangle)] = \frac{2}{\pi} arcsin(\langle u, v \rangle).$$

Lemma

Grothendieck identity. Let u, v be unit vectors in a Hilbert space H. If z is a randomly picked unit vector in H, then

$$\mathbb{E}[sign(\langle u, z \rangle) sign(\langle v, z \rangle)] = rac{2}{\pi} arcsin(\langle u, v
angle).$$

The previous result is nice, because with straightforward rounding, we get

$$\mathbb{E}\left[\sum_{i,j}a_{ij}x_iy_j\right] = \sum_{i,j}a_{ij}\frac{2}{\pi}\operatorname{arcsin}(\langle u_i,v_j\rangle).$$

The previous result is nice, because with straightforward rounding, we get

$$\mathbb{E}\left[\sum_{i,j} a_{ij} x_i y_j\right] = \sum_{i,j} a_{ij} \frac{2}{\pi} \operatorname{arcsin}(\langle u_i, v_j \rangle).$$

But we want an equality in terms of $\sum_{i,j} a_{ij} \langle u_i, v_j \rangle$, not $\sum_{i,j} a_{ij} \operatorname{arcsin}(\langle u_i, v_j \rangle)!$

The previous result is nice, because with straightforward rounding, we get

$$\mathbb{E}\left[\sum_{i,j} a_{ij} \mathsf{x}_i \mathsf{y}_j
ight] = \sum_{i,j} a_{ij} rac{2}{\pi} \operatorname{arcsin}(\langle u_i, v_j
angle).$$

But we want an equality in terms of $\sum_{i,j} a_{ij} \langle u_i, v_j \rangle$, not $\sum_{i,j} a_{ij} \operatorname{arcsin}(\langle u_i, v_j \rangle)!$ So how nice would it be if we could find vectors u'_i, v'_i such that

$$arcsin(\langle u'_i, v'_j \rangle) = c \langle u_i, v_j \rangle,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for some constant c...

Note that our task amounts to finding vectors such that $\langle u'_i, v'_j \rangle = \sin(c \langle u_i, v_j \rangle)$.

Note that our task amounts to finding vectors such that $\langle u'_i, v'_j \rangle = \sin(c \langle u_i, v_j \rangle)$. Recall the Taylor expansion of the sine:

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}.$$

Note that our task amounts to finding vectors such that $\langle u'_i, v'_j \rangle = \sin(c \langle u_i, v_j \rangle)$. Recall the Taylor expansion of the sine:

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}.$$

Thus

$$\sin(c\langle u_i, v_j\rangle) = \sum_{k=0}^{\infty} \frac{(-1)^k c^{2k+1} \langle u_i, v_j\rangle^{2k+1}}{(2k+1)!}.$$

$$\sin(c\langle u_i, v_j\rangle) = \sum_{k=0}^{\infty} \frac{(-1)^k c^{2k+1} \langle u_i, v_j\rangle^{2k+1}}{(2k+1)!}.$$

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○

$$\sin(c\langle u_i, v_j\rangle) = \sum_{k=0}^{\infty} \frac{(-1)^k c^{2k+1} \langle u_i, v_j\rangle^{2k+1}}{(2k+1)!}.$$

Let $x^{\otimes k}$ be the k-th tensor power of x. It is $\langle x^{\otimes k}, y^{\otimes k} \rangle = \langle x, y \rangle^k$.

 $\sin(c\langle u_i, v_j\rangle) = \sum_{k=0}^{\infty} \frac{(-1)^k c^{2k+1} \langle u_i, v_j \rangle^{2k+1}}{(2k+1)!}.$

Let $x^{\otimes k}$ be the k-th tensor power of x. It is $\langle x^{\otimes k}, y^{\otimes k} \rangle = \langle x, y \rangle^k$.

Consider the vectors T(u), S(v) defined by the following sequence:

$$egin{aligned} T(u)_k &= (-1)^k \sqrt{rac{c^{2k+1}}{(2k+1)!}} u^{\otimes (2k+1)} \ S(v)_k &= \sqrt{rac{c^{2k+1}}{(2k+1)!}} v^{\otimes (2k+1)} \end{aligned}$$

These vectors are in the Hilbert space $\bigoplus_{k=0}^{\infty} H^{\otimes (2k+1)}$, where $u, v \in H$.

$$\sin(c\langle u_i, v_j \rangle) = \sum_{k=0}^{\infty} \frac{(-1)^k c^{2k+1} \langle u_i, v_j \rangle^{2k+1}}{(2k+1)!}.$$

Let $x^{\otimes k}$ be the *k*-th tensor power of *x*. It is $\langle x^{\otimes k}, y^{\otimes k} \rangle = \langle x, y \rangle^k$.

Consider the vectors T(u), S(v) defined by the following sequence:

$$egin{aligned} T(u)_k &= (-1)^k \sqrt{rac{c^{2k+1}}{(2k+1)!}} u^{\otimes (2k+1)} \ S(v)_k &= \sqrt{rac{c^{2k+1}}{(2k+1)!}} v^{\otimes (2k+1)} \end{aligned}$$

These vectors are in the Hilbert space $\bigoplus_{k=0}^{\infty} H^{\otimes (2k+1)}$, where $u, v \in H$.

We have
$$\langle T(u), S(v) \rangle = \sin(c \langle u_i, v_j \rangle).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\|T(u)\|^2 = ?$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\|T(u)\|^2 = ?$$

Hint: $\sinh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$$\|T(u)\|^2 = \sinh(c\|u\|^2).$$

Hint: $\sinh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}.$

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○

$$||T(u)||^2 = \sinh(c||u||^2).$$

Hint: $\sinh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$.

So we choose c so that $\sinh(c) = 1 \Leftrightarrow c = \operatorname{arcsinh}(1) = \log(1 + \sqrt{2})$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

We now choose a random unit vector $z \in \bigoplus_{k=0}^{\infty} H^{\otimes (2k+1)}$ and set $x_i = sign(\langle u'_i, z \rangle)$, $y_j = sign(\langle v'_j, z \rangle)$. We have

$$\mathbb{E}\left[\sum_{i,j}a_{ij}x_iy_j\right] = \frac{2}{\pi}\sum_{i,j}a_{ij}\operatorname{arcsin}(\langle u'_i, v'_j\rangle) = \frac{2\log(1+\sqrt{2})}{\pi}\sum_{i,j}a_{ij}\langle u_i, v_j\rangle.$$

This establishes

$${\mathcal K}_{\mathbb R} \leq rac{\pi}{2\log(1+\sqrt{2})}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Proof due to Krivine¹.

¹https://www.irif.fr/~krivine/

Algorithmic applications

We have established an upper bound of Grothendieck's constant by showing that there exists a convenient set of vectors $\{u'_i, v'_i\} \subset \bigoplus_{k=0}^{\infty} H^{\otimes (2k+1)}$.

This suggests an algorithm to approximate $||A||_{\infty \to 1}$.

- 1. Relax $||A||_{\infty \to 1}$.
- 2. Solve the SDP.
- 3. Find $\{u'_i, v'_j\}$.

4. Choose z randomly and round by setting $x_i = sign(\langle u'_i, z \rangle), y_j = sign(\langle v'_j, z \rangle).$

But there's a problem...

We have established an upper bound of Grothendieck's constant by showing that there exists a convenient set of vectors $\{u'_i, v'_i\} \subset \bigoplus_{k=0}^{\infty} H^{\otimes (2k+1)}$.

This suggests an algorithm to approximate $||A||_{\infty \to 1}$.

- 1. Relax $||A||_{\infty \to 1}$.
- 2. Solve the SDP.
- 3. Find $\{u'_i, v'_j\}$.
- 4. Choose z randomly and round by setting $x_i = sign(\langle u'_i, z \rangle), y_j = sign(\langle v'_i, z \rangle).$

But there's a problem... $\bigoplus_{k=0}^{\infty} H^{\otimes (2k+1)}$ is infinite-dimensional!

We have established an upper bound of Grothendieck's constant by showing that there exists a convenient set of vectors $\{u'_i, v'_j\} \subset \bigoplus_{k=0}^{\infty} H^{\otimes (2k+1)}$.

This suggests an algorithm to approximate $||A||_{\infty \to 1}$.

- 1. Relax $||A||_{\infty \to 1}$.
- 2. Solve the SDP.
- 3. Find $\{u'_i, v'_j\}$.
- 4. Choose z randomly and round by setting $x_i = sign(\langle u'_i, z \rangle), y_j = sign(\langle v'_i, z \rangle).$

But there's a problem... $\bigoplus_{k=0}^{\infty} H^{\otimes (2k+1)}$ is infinite-dimensional!

No problem. $\{u'_i, v'_j\}$ are m + n vectors, so we can find a valid set in (m + n)-dimensional space. How?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

We now have an algorithm to approximate $||A||_{\infty \to 1}$. How about $||A||_C$?

We now have an algorithm to approximate $||A||_{\infty \to 1}$. How about $||A||_C$? Add 1 row and 1 column to A to obtain A':

• $a'_{i,m+1} = -\sum_{j=1}^{m} a_{ij}$, • $a'_{n+1,j} = -\sum_{i=1}^{m} a_{ij}$, • $a'_{n+1,m+1} = 0$. We now have an algorithm to approximate $||A||_{\infty \to 1}$. How about $||A||_C$? Add 1 row and 1 column to A to obtain A':

• $a'_{i,m+1} = -\sum_{j=1}^{m} a_{ij},$ • $a'_{n+1,j} = -\sum_{i=1}^{m} a_{ij},$ • $a'_{n+1,m+1} = 0.$

lt is

$$\|A\|_{C} = \|A'\|_{C} = \frac{1}{4}\|A\|_{\infty \to 1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The last equality is because rows and columns sum to zero.

This is just one of four approaches in the paper by Alon and Naor (2004). Check it out!

< ロ > < 回 > < 三 > < 三 > < 三 > の < で</p>

Alexander Grothendieck (1928 - 2014)

Thanks!

Alon, N. and Naor, A. (2004). Approximating the cut-norm via grothendieck's inequality. In *Proceedings of the thirty-sixth annual ACM symposium on Theory of computing*, pages 72–80.