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Correlation clustering

Definition
CORRELATIONCLUSTERING

» Input: graph G = (V,E).

» Solution: clustering c: V — N.

» Objective: minimize the number of disagreements:
> uv ¢ EAc(u)=c(v),
> uv € EAc(u) #c(v).



The P1voT algorithm — example

Credit: Aris



The P1voT algorithm — example

a pivot is selected uniformly at random
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The P1voT algorithm — example
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a cluster is formed with the pivot and all its neighbors

Credit: Aris



The P1voT algorithm — example
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a new pivot is selected from the remaining of the graph vertices
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The P1voT algorithm — example
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a second cluster is formed with the pivot and all its neighbors
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The P1voT algorithm — example
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and the process continues
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The P1voT algorithm — example
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until the whole graph is consumed.
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Correlation clustering — the KwWIKCLUSTER (or P1voT) algorithm

KwWIKCLUSTER(G = (V, Et,E™))

If V =10 then return (
Pick random pivot i€ V.
Set C = {i},V' =0.

» The P1voT algorithm

For all j €V, j 4 i: -+ An elegant randomized algorithm

If (i,j) € ET then -+ Approximation ratio 3

Add j to C L
Else (If (i,]) € E-) + Running time O(m)
Add j to V' — It assumes a complete graph

— It assumes an unweighted graph
Let G’ be the subgraph induced by V’.

Return C UKwWIKCLUSTER(G') .



Analysis of PIvOT for CORRELATIONCLUSTERING

Mistakes come from wedges.

Let T be the set of all wedges. / \
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Analysis of PIvOT for CORRELATIONCLUSTERING

Mistakes come from wedges.
Let T be the set of all wedges.

If all wedges are disjoint, then OPT > |T]|.

Otherwise...

Lemma

Suppose that for each t € T we define B; > 0 s.t. for every
eCE, D oSt < 1. Then

OPT > B:.

teT
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Analysis of PIvOT for CORRELATIONCLUSTERING

If Ve € E, Y ,.cct Bt < 1, then OPT > 37, 1 Bt

» For t € T, define A;: event that a vertex of t is the pivot and t is in the recursive
call.

> E [COStPIVOT] = ZtET]P) [At] .

> B.: event that e is a mistake.

> P[B. N A =P[Be|A] P[A] = iP[A,].

> For t,t'st. ectNt/, P[(BeNA:) N (Be N Ap)] = 0. Therefore,
Ytecr 3P[A] < 1.

So
E [COStPIVOT]

OPT > > %P[At] = 2

teT



Chromatic Correlation Clustering

Definition
CHROMATICCORRELATIONCLUSTERING
» Instance: edge-colored graph G = (V,E.¢), ¢: E — LCN.
» Solution:
> c:V N,
> X\:im(c) — L.
» Objective: minimize the number of disagreements:
> uv ¢ EAc(u)=c(v),
> uv e EAc(u) #c(v),
> uv € EAc(u) =c(v)Al(uv) # Xc(u)).



CHROMATICCORRELATIONCLUSTERING- The literature

Approximation algorithms for CHROMATICCORRELATIONCLUSTERING.

Method Factor Work
CHROMATICBALLS 6A  Bonchi et al. (2015)
REDUCE-AND-CLUSTER 11 Anava et al. (2015)
LP 4 Anava et al. (2015)
Prvor 3 Klodt et al. (2021)




Chromatic Correlation Clustering

“Judge a vertex not for the color of its edge, but for the content of its entries in the
adjacency matrix”.



Chromatic Correlation Clustering

“Judge a vertex not for the color of its edge, but for the content of its entries in the
adjacency matrix”.
Algorithm 1: Pivot
Data: An undirected, edge-colored Graph G = (V, E, col)
Result: A clustering C = {(Cy,¢1),... (Cm, cm)} with
Ci CVandc; € N
1 Pick a random pivot v € V as cluster-center;
C—{o};
for u € N(v) do
4 L C—CU{u};
5 ¢« argmaxeccolors|{ab € ENC? | col(ab) = c}|;
return {(C, c)} U Pivot(G[V \ C]);
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Analysis of P1vOoT for CHROMATICCORRELATIONCLUSTERING

Analysis by Klodt et al. (2021).

Consider three solutions:

> opt = (C*, %),

» S =(C,\) (output of P1voT),

> S'=(C,\) (setting N'(C;) = N(pj)).
Note that d(S) < d(S').
Definition

Critical iteration of ab € (\2/) iteration in which at least the first of a, b becomes
clustered.



Analysis of P1vOoT for CHROMATICCORRELATIONCLUSTERING

Let ab be a disagreement. Let c be the pivot in the critical iteration of a (first of a, b

w.l.0.g).
We will charge B,y, € {ab, ac, bc} such that B,, € D(opt).

Three cases:
1. ab is a non-edge within a cluster of S';
2. ab is an edge between clusters of S’;
3. If ab is an edge in a cluster of S’ but does not have the color of its cluster.



Analysis of P1vOoT for CHROMATICCORRELATIONCLUSTERING

Case 1: ab is a non-edge within a cluster of S;

Note that ac and bc are both edges.

1.1 If a and b are in the same cluster in
opt then ab € D(opt). We charge
B.p := ab.

1.2 If a and b are in separate clusters in
opt: then either ac or bc is an edge
between clusters in opt and so in
D(opt). We charge B,p, := ac if
ac € D(opt), and B,p := bc
otherwise.




Analysis of P1vOoT for CHROMATICCORRELATIONCLUSTERING

Three cases:

1. ab is a non-edge
within a cluster
of §/;

2. ab is an edge
between clusters
of §/;

3. If abis an edge
in a cluster of S’
but does not
have the color of
its cluster.

Figure 1: Charging cases in the proof of Theorem 2.1. Gray:
Cluster of Sol’ during critical iteration of ab. Blue: Cluster
of Opt. Red: Charged edge. Note that slight variants of these
examples are possible.



Analysis of P1vOoT for CHROMATICCORRELATIONCLUSTERING

For each e € d(opt), Me C d(S’) is the set of disagreements charged to e.

Let uv € d(opt), S = N(u) UN(v) U {u, v}. The pivot at the c.i. of uv is a vertex of
S, each with prob. 1/|S].
Three cases:

1. uv is a non-edge in a cluster of opt.
2. uv is an edge between clusters of opt.
3. uv is an edge in a cluster of opt with the wrong color.



Analysis of P1vOoT for CHROMATICCORRELATIONCLUSTERING

Case 1: wv is a non-edge in a cluster of opt.

1.1 Charged only for itself when
p e N(u)ynN(v)
2.1.1 pisuorv.
Thus,

[N(u) N N(V)[ |, 2IN(u) N N(v)

E Muv =
(M} 5] 5]



Analysis of P1vOoT for CHROMATICCORRELATIONCLUSTERING

Similarly, all three cases yield an expected error of at most 3.

Theorem
The color-blind P1voT yields

3OPT Z ]E [COStPIVOT] .



Thanks!
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