Signed graphs: theory and applications

Bruno Ordozgoiti ${ }^{1}$
${ }^{1}$ Dept. of Computer Science - Aalto University

BYMAT 2020

Some theory

Signed graphs

Signed graphs: each edge labeled + or - .
Definitions:

- $G=\left(V, E^{+}, E^{-}\right)$,
- $G=(V, E, \sigma), \sigma: E \rightarrow\{-,+\}$.

Signed graphs

Signed graphs: each edge labeled + or - .
Definitions:

- $G=\left(V, E^{+}, E^{-}\right)$,
- $G=(V, E, \sigma), \sigma: E \rightarrow\{-,+\}$.

Adjacency matrix: $A=A_{E^{+}}-A_{E^{-}}$

Differences in signed graphs

Densest subgraph

Densest subgraph problem in unsigned graphs:

$$
\max _{S \subseteq V} \frac{2 e(S)}{|S|}=\max _{x \in\{0,1\}^{n}} \frac{x^{\top} A x}{x^{\top} x}
$$

Polynomial-time solvable (Goldberg, 1984).

Differences in signed graphs

Densest subgraph

Densest subgraph problem in unsigned graphs:

$$
\max _{S \subseteq V} \frac{2 e(S)}{|S|}=\max _{x \in\{0,1\}^{n}} \frac{x^{\top} A x}{x^{\top} x}
$$

Polynomial-time solvable (Goldberg, 1984).
Densest subgraph problem in signed graphs:

$$
\max _{x \in\{-1,0,1\}^{n}} \frac{x^{\top} A x}{x^{\top} x}
$$

NP-hard! (Bonchi et al., 2019; Tsourakakis et al., 2019).

Motivation

Motivation: balance in social networks (Harary, 1953).
"The friend of a friend is a friend" (or "the enemy of a friend is an enemy").

The four possible non-isomorphic signed triangles.

Motivation

Characterizations of balance

G is balanced iff

- It contains no negative (unbalanced) cycles.

Some balanced graphs

Motivation

Characterizations of balance

G is balanced iff
－It contains no negative（unbalanced）cycles．
－There exists a sign－compliant partition of $G: V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\varnothing$ ，all＋ edges within sets，all－edges between sets．

Some balanced graphs

Motivation

Characterizations of balance

G is balanced iff

- It contains no negative (unbalanced) cycles.
- There exists a sign-compliant partition of $G: V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\varnothing$, all + edges within sets, all - edges between sets.
- All paths between any pair u, v have the same sign.

Some balanced graphs

Spectral theory

Review of unsigned spectral theory:
Laplacian: $L=D-A$

Spectral theory

Review of unsigned spectral theory:
Laplacian: $L=D-A$

$$
L v_{1}=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=0
$$

- $\lambda_{\min }(L)=0$ (Multiplicity of $0=\mathrm{n}$. of connected components)

Spectral theory

Review of unsigned spectral theory:
Laplacian: $L=D-A$

- $\lambda_{\text {min }}(L)=0$ (Multiplicity of $0=\mathrm{n}$. of connected components)
- Eigenvector v_{2} gives a "good" partition (Cheeger inequality).

$$
v_{2} \approx\left(\begin{array}{c}
-0.25 \\
-0.38 \\
-0.38 \\
-0.38 \\
0.38 \\
0.38 \\
0.38 \\
0.25
\end{array}\right), \lambda_{2}(L) \approx 0.35
$$

Spectral theory

Signed spectral theory:
Laplacian: $L=D-A$

Unsigned	Signed
L is positive semidefinite	
$D_{i i}=\sum_{j} A_{i j}$	$D_{i i}=\sum_{j}\left\|A_{i j}\right\|$
$\lambda_{\min }(L)=0$	$\lambda_{\min }(L) \geq 0$

Spectral characterizations of balance

- Connected and $\lambda_{\text {min }}=0$ (or one zero-eigval per connected component).

Spectral theory

Signed spectral theory:
Laplacian: $L=D-A$

Unsigned	Signed
L is positive semidefinite	
$D_{i i}=\sum_{j} A_{i j}$	$D_{i i}=\sum_{j}\left\|A_{i j}\right\|$
$\lambda_{\min }(L)=0$	$\lambda_{\min }(L) \geq 0$

Spectral characterizations of balance

- Connected and $\lambda_{\text {min }}=0$ (or one zero-eigval per connected component).
- Spectrum of $A=$ spectrum of \bar{A} (underlying graph).

Spectral theory

Signed spectral theory:
Laplacian: $L=D-A$

Unsigned	Signed
L is positive semidefinite	
$D_{i i}=\sum_{j} A_{i j}$	$D_{i i}=\sum_{j}\left\|A_{i j}\right\|$
$\lambda_{\min }(L)=0$	$\lambda_{\min }(L) \geq 0$

Spectral characterizations of balance

- Connected and $\lambda_{\text {min }}=0$ (or one zero-eigval per connected component).
- Spectrum of $A=$ spectrum of \bar{A} (underlying graph).
- A switches to \bar{A} (switching preserves the spectrum).

Some recent results

Signed densest subgraph

(Bonchi, Galimberti, Gionis, Ordozgoiti, and Ruffo, 2019)
$\max _{x \in\{-1,0,1\}^{n}} \frac{x^{\top} A^{\top} x}{x^{\top} x}$. (NP-hard)

Signed densest subgraph

(Bonchi, Galimberti, Gionis, Ordozgoiti, and Ruffo, 2019)
$\max _{x \in\{-1,0,1\}^{n}} \frac{x^{\top} A^{\top} x}{x^{\top} x}$. (NP-hard)

Randomized algorithm:

Input: $n \times n$ adjacency matrix A
1: Compute v, leading eigenvector of A.
2: Set $x_{i}=\operatorname{sgn}\left(v_{i}\right)$ with probability $\left|v_{i}\right|, x_{i}=0$ w.p. $1-\left|v_{i}\right|$.

3: Output x.

Signed densest subgraph

(Bonchi, Galimberti, Gionis, Ordozgoiti, and Ruffo, 2019)
$\max _{x \in\{-1,0,1\}^{n}} \frac{x^{\top} A x}{x^{\top} x}$. (NP-hard)

Randomized algorithm:

Input: $n \times n$ adjacency matrix A
1: Compute v, leading eigenvector of A.
2: Set $x_{i}=\operatorname{sgn}\left(v_{i}\right)$ with probability $\left|v_{i}\right|, x_{i}=0$ w.p. $1-\left|v_{i}\right|$.

3: Output x.

Theorem

Our algorithm gives a \sqrt{n}-approximation.

$$
\mathcal{O}(\sqrt{n}) \mathbb{E}\left[\frac{x^{\top} A x}{x^{\top} x}\right] \geq \lambda_{\max } \geq O P T
$$

Tight analysis:

Signed densest subgraph

(Bonchi, Galimberti, Gionis, Ordozgoiti, and Ruffo, 2019)
$\max _{x \in\{-1,0,1\}^{n}} \frac{x^{\top} A x}{x^{\top} x}$. (NP-hard)

Randomized algorithm:

Input: $n \times n$ adjacency matrix A
1: Compute v, leading eigenvector of A.
2: Set $x_{i}=\operatorname{sgn}\left(v_{i}\right)$ with probability $\left|v_{i}\right|, x_{i}=0$ w.p. $1-\left|v_{i}\right|$.

3: Output x.
(Bhaskara, Charikar, Manokaran, and Vijayaraghavan, 2012) give an SDP-based $n^{1 / 3}$-approximation.

Theorem

Our algorithm gives a \sqrt{n}-approximation.

$$
\mathcal{O}(\sqrt{n}) \mathbb{E}\left[\frac{x^{\top} A x}{x^{\top} x}\right] \geq \lambda_{\max } \geq O P T
$$

Tight analysis:

Signed densest subgraph

$\mathcal{O}(\sqrt{n})$ is the best possible approximation of $\lambda_{\text {max }}$:

Signed densest subgraph

$\mathcal{O}(\sqrt{n})$ is the best possible approximation of $\lambda_{\text {max }}$:

$$
O P T=\frac{2 e\left(S^{*}\right)}{\left|S^{*}\right|}=\frac{2(n-1)}{n}=\mathcal{O}(1) .
$$

Signed densest subgraph

$\mathcal{O}(\sqrt{n})$ is the best possible approximation of $\lambda_{\text {max }}$:

$$
O P T=\frac{2 e\left(S^{*}\right)}{\left|S^{*}\right|}=\frac{2(n-1)}{n}=\mathcal{O}(1)
$$

Consider $z=(\sqrt{\frac{n+1}{2 n}}, \underbrace{\frac{1}{\sqrt{2 n}}, \ldots, \frac{1}{\sqrt{2 n}}}_{n / 2-1}, \underbrace{\frac{-1}{\sqrt{2 n}}, \ldots, \frac{-1}{\sqrt{2 n}}}_{n / 2})$.
$z^{T} z=1$ and $z^{T} A z=\frac{\sqrt{n+1}+1}{2}-\frac{1}{n}=\Omega(\sqrt{n})$.

Extension to arbitrary number of conflicting groups

(Tzeng, Ordozgoiti, and Gionis, 2020).

$$
\max _{S_{1}, \ldots, S_{k}} \frac{\sum_{h \in[k]}\left(\left|E_{+}\left(S_{h}\right)\right|-\left|E_{-}\left(S_{h}\right)\right|\right)+\frac{1}{k-1} \sum_{h \neq l \in[k]}\left(\left|E_{-}\left(S_{h}, S_{\ell}\right)\right|-\left|E_{+}\left(S_{h}, S_{\ell}\right)\right|\right)}{\left|\cup_{h \in[k]} S_{h}\right|}
$$

Extension to arbitrary number of conflicting groups

(Tzeng, Ordozgoiti, and Gionis, 2020).

$$
\max _{S_{1}, \ldots, S_{k}} \frac{\sum_{h \in[k]}\left(\left|E_{+}\left(S_{h}\right)\right|-\left|E_{-}\left(S_{h}\right)\right|\right)+\frac{1}{k-1} \sum_{h \neq l \in[k]}\left(\left|E_{-}\left(S_{h}, S_{\ell}\right)\right|-\left|E_{+}\left(S_{h}, S_{\ell}\right)\right|\right)}{\left|\cup_{h \in[k]} S_{h}\right|} .
$$

$=\frac{\left\langle A, X L_{k} X^{\top}\right\rangle_{F}}{k-1}$, where $L_{k}=k l_{k}-J_{k}$ and $X \in\{0,1\}^{n \times k}$ is a node-group indicator matrix.

Extension to arbitrary number of conflicting groups

$\frac{\left\langle A, X L_{k} X^{\top}\right\rangle_{F}}{k-1}$.
L_{k} has a $(k-1)$-dimensional invariant subspace. Let $L_{k}=U D U^{T}, Y=X U$. We choose U to be

$$
\begin{align*}
& \left(U_{i}, 1\right)^{T}=1 / \sqrt{k}[1, \ldots, 1] \text {, } \\
& \left(U_{:, 2}\right)^{T}=c_{1}[k-1,-1, \ldots,-1], \\
& \left(U_{:, 3}\right)^{T}=c_{2}[0, k-2,-1, \ldots,-1], \quad \ldots \quad\left(U_{i, k}\right)^{T}=c_{k-1}[0, \ldots, 0,1,-1] \text {, } \tag{1}
\end{align*}
$$

Extension to arbitrary number of conflicting groups

$\frac{\left\langle A, X L_{k} X^{\top}\right\rangle_{F}}{k-1}$.
L_{k} has a $(k-1)$-dimensional invariant subspace. Let $L_{k}=U D U^{T}, Y=X U$. We choose U to be

$$
\begin{array}{lrlrl}
\left(U_{:, 1}\right)^{T} & =1 / \sqrt{k}[1, \ldots, 1], & \left(U_{:, 2}\right)^{T} & =c_{1}[k-1,-1, \ldots,-1], \\
\left(U_{:, 3}\right)^{T} & =c_{2}[0, k-2,-1, \ldots,-1], & \ldots & \left(U_{:, k}\right)^{T} & =c_{k-1}[0, \ldots, 0,1,-1],
\end{array}
$$

Equivalent formulation:

$$
\max _{Y \in \mathbb{R}^{n \times(k-1)} \backslash\{0\}} \frac{\operatorname{Tr}\left(Y^{\top} A Y\right)}{\operatorname{Tr}\left(Y^{T} Y\right)} \text { subject to } \quad Y_{i, j}= \begin{cases}c_{j}(k-j), & \text { if } i \in S_{j} \\ 0, & \text { if } i \in \cup_{h=1}^{j-1} S_{h} \text { or } i \notin \cup_{h \in[k]} S_{h} . \\ -c_{j}, & \text { if } i \in \cup_{h=j+1}^{k} S_{h}\end{cases}
$$

Extension to arbitrary number of conflicting groups

$\frac{\left\langle A, X L_{k} X^{\top}\right\rangle_{F}}{k-1}$.
L_{k} has a $(k-1)$-dimensional invariant subspace. Let $L_{k}=U D U^{T}, Y=X U$. We choose U to be

$$
\begin{align*}
& \left(U_{:, 1}\right)^{T}=1 / \sqrt{k}[1, \ldots, 1] \text {, } \\
& \left(U_{:, 2}\right)^{T}=c_{1}[k-1,-1, \ldots,-1] \text {, } \\
& \left(U_{:, 3}\right)^{T}=c_{2}[0, k-2,-1, \ldots,-1] \tag{1}\\
& \left(U_{i, k}\right)^{T}=c_{k-1}[0, \ldots, 0,1,-1] \text {, }
\end{align*}
$$

Equivalent formulation:

$$
\max _{Y \in \mathbb{R}^{n \times(k-1)} \backslash\{0\}} \frac{\operatorname{Tr}\left(Y^{\top} A Y\right)}{\operatorname{Tr}\left(Y^{\top} Y\right)} \text { subject to } \quad Y_{i, j}= \begin{cases}c_{j}(k-j), & \text { if } i \in S_{j} \\ 0, & \text { if } i \in \cup_{h=1}^{j-1} S_{h} \text { or } i \notin \cup_{h \in[k]} S_{h} . \\ -c_{j}, & \text { if } i \in \cup_{h=j+1}^{k} S_{h}\end{cases}
$$

We give a $\mathcal{O}(k \sqrt{n})$-approximation.

Conflicting groups with queries

(Xiao, Ordozgoiti, and Gionis, 2020)

Conflicting groups with queries

(Xiao, Ordozgoiti, and Gionis, 2020)

$$
S_{1}=\{0\}, S_{2}=\{0\}
$$

Conflicting groups with queries

For $C_{1}, C_{2} \subseteq V$,

$$
\beta\left(C_{1}, C_{2}\right)=\frac{\left|E\left(C_{1} \cup C_{2}, V \backslash\left(C_{1} \cup C_{2}\right)\right)\right|+\left|E^{+}\left(C_{1}, C_{2}\right)\right|+\left|E^{-}\left(C_{1}\right)\right|+\left|E^{-}\left(C_{2}\right)\right|}{v o l\left(C_{1} \cup C_{2}\right)} .
$$

Conflicting groups with queries

For $C_{1}, C_{2} \subseteq V$,

$$
\beta\left(C_{1}, C_{2}\right)=\frac{\left|E\left(C_{1} \cup C_{2}, V \backslash\left(C_{1} \cup C_{2}\right)\right)\right|+\left|E^{+}\left(C_{1}, C_{2}\right)\right|+\left|E^{-}\left(C_{1}\right)\right|+\left|E^{-}\left(C_{2}\right)\right|}{v o l\left(C_{1} \cup C_{2}\right)} .
$$

minimize $\beta\left(C_{1}, C_{2}\right)$
s.t $\quad S_{1} \subseteq C_{1}$ and $S_{2} \subseteq C_{2}$
relevance to seed sets S_{1}, S_{2}
$\operatorname{vol}\left(C_{1} \cup C_{2}\right) / \operatorname{vol}\left(S_{1} \cup S_{2}\right) \leq k$
control over solution size

Conflicting groups with queries

We rely on the next result:

$$
\beta\left(C_{1}, C_{2}\right) \leq \frac{x^{\top} L x}{x^{\top} D x} \leq 4 \beta\left(C_{1}, C_{2}\right) .
$$

Combinatorial formulation:
Matrix formulation:

$$
\begin{array}{rlrl}
\min & \beta\left(C_{1}, C_{2}\right) & \min & \frac{x^{T} L x}{x^{T} D x} \\
\text { s.t. } & S_{1} \subseteq C_{1} & \text { s.t. } & s^{T} x \geq \kappa \\
& S_{2} \subseteq C_{2} & & x \in\{-1,0,1\}^{n} \\
& \operatorname{vol}\left(C_{1} \cup C_{2}\right) / \operatorname{vol}\left(S_{1} \cup S_{2}\right) \leq k & s \text { is an indicator of the seed set. }
\end{array}
$$

We give an algorithm guaranteeing $\beta\left(C_{1}, C_{2}\right)=\mathcal{O}\left(\sqrt{\beta\left(C_{1}^{*}, C_{2}^{*}\right)}\right)$.

Some applications

Applications

- Vertices: US Congresspeople.
- Edges: Mentions, favourable and unfavourable.

Applications

- Vertices: English words
- Edges: synonym ("happy" vs "joyful") and antonym ("happy" vs "sad") relationships.

Open problems

- When is $\max _{x \in\{-1,0,1\}^{n}} \frac{x^{\top} A x}{x^{\top} X}$ easy?
- When is $\max _{x \in\{-1,0,1\}^{n}} \frac{x^{\top} A x}{X^{\top} X}=\frac{\lambda_{\text {max }}}{\mathcal{O}(1)}$?

Thanks!

References I

Aditya Bhaskara, Moses Charikar, Rajsekar Manokaran, and Aravindan Vijayaraghavan. On quadratic programming with a ratio objective. In International Colloquium on Automata, Languages, and Programming, pages 109-120. Springer, 2012.
Francesco Bonchi, Edoardo Galimberti, Aristides Gionis, Bruno Ordozgoiti, and Giancarlo Ruffo. Discovering polarized communities in signed networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pages 961-970, 2019.
Andrew V Goldberg. Finding a maximum density subgraph. University of California Berkeley, 1984.
P Hansen. Shortest paths in signed graphs. In North-Holland mathematics studies, volume 95, pages 201-214. Elsevier, 1984.

References II

Frank Harary. On the notion of balance of a signed graph. The Michigan Mathematical Journal, 2(2):143-146, 1953.
Charalampos E Tsourakakis, Tianyi Chen, Naonori Kakimura, and Jakub Pachocki. Novel dense subgraph discovery primitives: Risk aversion and exclusion queries. arXiv preprint arXiv:1904.08178, 2019.
Ruo-Chun Tzeng, Bruno Ordozgoiti, and Aristides Gionis. Discovering conflicting groups in signed networks. Advances in Neural Information Processing Systems, 33, 2020.
Han Xiao, Bruno Ordozgoiti, and Aristides Gionis. Searching for polarization in signed graphs: a local spectral approach. arXiv preprint arXiv:2001.09410, 2020.

