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Some theory



Signed graphs

Signed graphs: each edge labeled + or −.

Definitions:

I G = (V ,E+,E−),

I G = (V ,E , σ), σ : E → {−,+}.

Adjacency matrix: A = AE+ − AE−

+ +

-

7→

 0 1 1
1 0 −1
1 −1 0
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Differences in signed graphs
Densest subgraph

Densest subgraph problem in unsigned graphs:

max
S⊆V

2e(S)

|S|
= max

x∈{0,1}n

xT Ax
xT x

.

Polynomial-time solvable (Goldberg, 1984).

Densest subgraph problem in signed graphs:

max
x∈{−1,0,1}n

xT Ax
xT x

.

NP-hard ! (Bonchi et al., 2019; Tsourakakis et al., 2019).
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Motivation

Motivation: balance in social networks (Harary, 1953).

“The friend of a friend is a friend” (or “the enemy of a friend is an enemy ”).

+ +

+

- -

+︸ ︷︷ ︸
Balanced

+ +

-

- -

-︸ ︷︷ ︸
Not balanced

The four possible non-isomorphic signed triangles.



Motivation

Characterizations of balance
G is balanced iff

I It contains no negative (unbalanced) cycles.

I There exists a sign-compliant partition of G: V = V1 ∪ V2,V1 ∩ V2 = ∅, all +
edges within sets, all - edges between sets.

I All paths between any pair u, v have the same sign.

Some balanced graphs
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Spectral theory

Review of unsigned spectral theory:

Laplacian: L = D − A L

v1

=

 2 −1 −1
−1 2 −1
−1 −1 2



 1
1
1

 = 0

I λmin(L) = 0 (Multiplicity of 0 = n. of connected components)
I Eigenvector v2 gives a “good” partition (Cheeger inequality).

v2 ≈



−0.25
−0.38
−0.38
−0.38
0.38
0.38
0.38
0.25


, λ2(L) ≈ 0.35.
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Spectral theory

Signed spectral theory:

Laplacian: L = D − A

Unsigned Signed

L is positive semidefinite

Dii =
∑

j Aij Dii =
∑

j |Aij |

λmin(L) = 0 λmin(L) ≥ 0

+ -

-

Lv1 =

 2 −1 1
−1 2 1
1 1 2


 1

1
−1

 = 0

Spectral characterizations of balance
I Connected and λmin = 0 (or one zero-eigval per connected component).

I Spectrum of A = spectrum of Ā (underlying graph).
I A switches to Ā (switching preserves the spectrum).
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Some recent results



Signed densest subgraph

(Bonchi, Galimberti, Gionis, Ordozgoiti, and Ruffo, 2019)

maxx∈{−1,0,1}n
xT A x
xT x . (NP-hard)

Randomized algorithm:

Input: n × n adjacency matrix A
1: Compute v , leading eigenvector of A.
2: Set xi = sgn(vi) with probability |vi |, xi = 0

w.p. 1− |vi |.
3: Output x .

Theorem
Our algorithm gives a

√
n-approximation.

O(
√

n)E
[

xT A x
xT x

]
≥ λmax ≥ OPT .

Tight analysis:

(Bhaskara, Charikar, Manokaran, and Vijayaraghavan, 2012) give an SDP-based
n1/3-approximation.
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Signed densest subgraph

O(
√

n) is the best possible approximation of λmax:

... n
2

−Kn−1

OPT =
2e(S∗)
|S∗|

=
2(n − 1)

n
= O(1).

Consider z =


√

n+1
2n ,

1√
2n
, . . . ,

1√
2n︸ ︷︷ ︸

n/2−1

,
−1√
2n
, . . . ,

−1√
2n︸ ︷︷ ︸

n/2

.

zT z = 1 and zT Az =
√

n+1+1
2 − 1

n = Ω(
√

n).
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Extension to arbitrary number of conflicting groups

(Tzeng, Ordozgoiti, and Gionis, 2020).

max
S1,...,Sk

∑
h∈[k ](|E+(Sh)| − |E−(Sh)|) + 1

k−1
∑

h 6=l∈[k ](|E−(Sh,S`)| − |E+(Sh,S`)|)
| ∪h∈[k ] Sh|

.

=
〈A,XLkX T 〉F

k − 1
,where Lk = kIk − Jk and X ∈ {0,1}n×k is a node-group indicator matrix.
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Extension to arbitrary number of conflicting groups
〈A,XLk X T 〉F

k−1 .

Lk has a (k − 1)-dimensional invariant subspace. Let Lk = UDUT , Y = XU. We choose U
to be

(U:,1)T = 1/
√

k [1, . . . ,1], (U:,2)T = c1 [k − 1,−1, . . . ,−1],

(U:,3)T = c2 [0, k − 2,−1, . . . ,−1], . . . (U:,k )T = ck−1 [0, . . . ,0,1,−1],
(1)

Equivalent formulation:

max
Y∈Rn×(k−1)\{0}

Tr(Y T AY )

Tr(Y T Y )
subject to Yi,j =


cj (k − j), if i ∈ Sj

0, if i ∈ ∪j−1
h=1Sh or i /∈ ∪h∈[k ]Sh

−cj , if i ∈ ∪k
h=j+1Sh

.

We give a O(k
√

n)-approximation.
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Conflicting groups with queries

For C1,C2 ⊆ V ,

β(C1,C2) =
|E(C1 ∪ C2,V \ (C1 ∪ C2))|+ |E+(C1,C2)|+ |E−(C1)|+ |E−(C2)|

vol(C1 ∪ C2)
.

minimize β(C1,C2)

s.t S1 ⊆ C1 and S2 ⊆ C2 relevance to seed sets S1,S2

vol(C1 ∪ C2)/vol(S1 ∪ S2) ≤ k control over solution size
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Conflicting groups with queries

We rely on the next result:

β(C1,C2) ≤ xT Lx
xT Dx

≤ 4β(C1,C2).

Combinatorial formulation:

min β(C1,C2)

s.t. S1 ⊆ C1

S2 ⊆ C2

vol(C1 ∪ C2)/vol(S1 ∪ S2) ≤ k

Matrix formulation:

min
xT Lx
xT Dx

s.t. sT x ≥ κ
x ∈ {−1,0,1}n

s is an indicator of the seed set.

We give an algorithm guaranteeing β(C1,C2) = O
(√

β(C∗1 ,C
∗
2)
)
.



Some applications



Applications

I Vertices: US Congresspeople.

I Edges: Mentions, favourable and unfavourable.



Applications

I Vertices: English words

I Edges: synonym (“happy” vs “joyful”) and antonym (“happy” vs “sad”) relationships.

trusty

fair

faithful

honest

foul

cheating
lying

designing

sly

C1

C2

modest
moderate

fair
medium

radical
extreme

infinite

intensive

E+

E−

(a) fair as without cheating (b) fair as not excessive
S1 = {fair, honest} S1 = {fair, modest}

S2 = {cheating} S2 = {extreme}



Open problems

I When is maxx∈{−1,0,1}n
xT A x
xT x easy?

I When is maxx∈{−1,0,1}n
xT A x
xT x = λmax

O(1)?



Thanks!
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